Probabilistic Combinatorics
   HOME
*





Probabilistic Combinatorics
The probabilistic method is a nonconstructive method, primarily used in combinatorics and pioneered by Paul Erdős, for proving the existence of a prescribed kind of mathematical object. It works by showing that if one randomly chooses objects from a specified class, the probability that the result is of the prescribed kind is strictly greater than zero. Although the proof uses probability, the final conclusion is determined for ''certain'', without any possible error. This method has now been applied to other areas of mathematics such as number theory, linear algebra, and real analysis, as well as in computer science (e.g. randomized rounding), and information theory. Introduction If every object in a collection of objects fails to have a certain property, then the probability that a random object chosen from the collection has that property is zero. Similarly, showing that the probability is (strictly) less than 1 can be used to prove the existence of an object that does ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nonconstructive Proof
In mathematics, a constructive proof is a method of proof that demonstrates the existence of a mathematical object by creating or providing a method for creating the object. This is in contrast to a non-constructive proof (also known as an existence proof or ''pure existence theorem''), which proves the existence of a particular kind of object without providing an example. For avoiding confusion with the stronger concept that follows, such a constructive proof is sometimes called an effective proof. A constructive proof may also refer to the stronger concept of a proof that is valid in constructive mathematics. Constructivism is a mathematical philosophy that rejects all proof methods that involve the existence of objects that are not explicitly built. This excludes, in particular, the use of the law of the excluded middle, the axiom of infinity, and the axiom of choice, and induces a different meaning for some terminology (for example, the term "or" has a stronger meaning in cons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hamiltonian Cycle
In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path. Determining whether such paths and cycles exist in graphs (the Hamiltonian path problem and Hamiltonian cycle problem) are NP-complete. Hamiltonian paths and cycles are named after William Rowan Hamilton who invented the icosian game, now also known as ''Hamilton's puzzle'', which involves finding a Hamiltonian cycle in the edge graph of the dodecahedron. Hamilton solved this problem using the icosian calculus, an algebraic structure based on roots of unity with many similarities to the quaternions (also invented by Hami ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Method Of Conditional Probabilities
In mathematics and computer science, the probabilistic method is used to prove the existence of mathematical objects with desired combinatorial properties. The proofs are probabilistic — they work by showing that a random object, chosen from some probability distribution, has the desired properties with positive probability. Consequently, they are nonconstructive — they don't explicitly describe an efficient method for computing the desired objects. The method of conditional probabilities , converts such a proof, in a "very precise sense", into an efficient deterministic algorithm, one that is guaranteed to compute an object with the desired properties. That is, the method derandomizes the proof. The basic idea is to replace each random choice in a random experiment by a deterministic choice, so as to keep the conditional probability of failure, given the choices so far, below 1. The method is particularly relevant in the context of randomized rounding (which uses the prob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Las Vegas Algorithm
In computing, a Las Vegas algorithm is a randomized algorithm that always gives correct results; that is, it always produces the correct result or it informs about the failure. However, the runtime of a Las Vegas algorithm differs depending on the input. The usual definition of a Las Vegas algorithm includes the restriction that the ''expected'' runtime be finite, where the expectation is carried out over the space of random information, or entropy, used in the algorithm. An alternative definition requires that a Las Vegas algorithm always terminates (is effective), but may output a symbol not part of the solution space to indicate failure in finding a solution. The nature of Las Vegas algorithms makes them suitable in situations where the number of possible solutions is limited, and where verifying the correctness of a candidate solution is relatively easy while finding a solution is complex. Las Vegas algorithms are prominent in the field of artificial intelligence, and in other ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Interactive Proof System
In computational complexity theory, an interactive proof system is an abstract machine that models computation as the exchange of messages between two parties: a ''prover'' and a ''verifier''. The parties interact by exchanging messages in order to ascertain whether a given string belongs to a language or not. The prover possesses unlimited computational resources but cannot be trusted, while the verifier has bounded computation power but is assumed to be always honest. Messages are sent between the verifier and prover until the verifier has an answer to the problem and has "convinced" itself that it is correct. All interactive proof systems have two requirements: * Completeness: if the statement is true, the honest prover (that is, one following the protocol properly) can convince the honest verifier that it is indeed true. * Soundness: if the statement is false, no prover, even if it doesn't follow the protocol, can convince the honest verifier that it is true, except with some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Coloring
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color. Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just a vertex coloring of its line graph, and a face coloring of a plane graph is just a vertex coloring of its dual. However, non-vertex coloring problems are often stated and studied as-is. This is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Independent Set (graph Theory)
In graph theory, an independent set, stable set, coclique or anticlique is a set of vertices in a graph, no two of which are adjacent. That is, it is a set S of vertices such that for every two vertices in S, there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in S. A set is independent if and only if it is a clique in the graph's complement. The size of an independent set is the number of vertices it contains. Independent sets have also been called "internally stable sets", of which "stable set" is a shortening. A maximal independent set is an independent set that is not a proper subset of any other independent set. A maximum independent set is an independent set of largest possible size for a given graph G. This size is called the independence number of ''G'' and is usually denoted by \alpha(G). The optimization problem of finding such a set is called the maximum independent set problem. It is a strongly NP-hard problem. As such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chromatic Number
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color. Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just a vertex coloring of its line graph, and a face coloring of a plane graph is just a vertex coloring of its dual. However, non-vertex coloring problems are often stated and studied as-is. This is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cycle (graph Theory)
In graph theory, a cycle in a graph is a non-empty trail in which only the first and last vertices are equal. A directed cycle in a directed graph is a non-empty directed trail in which only the first and last vertices are equal. A graph without cycles is called an ''acyclic graph''. A directed graph without directed cycles is called a ''directed acyclic graph''. A connected graph without cycles is called a ''tree''. Definitions Circuit and cycle * A circuit is a non-empty trail in which the first and last vertices are equal (''closed trail''). : Let be a graph. A circuit is a non-empty trail with a vertex sequence . * A cycle or simple circuit is a circuit in which only the first and last vertices are equal. Directed circuit and directed cycle * A directed circuit is a non-empty directed trail in which the first and last vertices are equal (''closed directed trail''). : Let be a directed graph. A directed circuit is a non-empty directed trail with a vertex sequence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exponential Growth
Exponential growth is a process that increases quantity over time. It occurs when the instantaneous rate of change (that is, the derivative) of a quantity with respect to time is proportional to the quantity itself. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). If the constant of proportionality is negative, then the quantity decreases over time, and is said to be undergoing exponential decay instead. In the case of a discrete domain of definition with equal intervals, it is also called geometric growth or geometric decay since the function values form a geometric progression. The formula for exponential growth of a variable at the growth rate , as time goes on in discrete intervals (that is, at integer times 0, 1, 2, 3, ...), is x_t = x_0(1+r)^t where is the value of at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ramsey Number
In combinatorics, Ramsey's theorem, in one of its graph-theoretic forms, states that one will find monochromatic cliques in any edge labelling (with colours) of a sufficiently large complete graph. To demonstrate the theorem for two colours (say, blue and red), let and be any two positive integers. Ramsey's theorem states that there exists a least positive integer for which every blue-red edge colouring of the complete graph on vertices contains a blue clique on vertices or a red clique on vertices. (Here signifies an integer that depends on both and .) Ramsey's theorem is a foundational result in combinatorics. The first version of this result was proved by F. P. Ramsey. This initiated the combinatorial theory now called Ramsey theory, that seeks regularity amid disorder: general conditions for the existence of substructures with regular properties. In this application it is a question of the existence of ''monochromatic subsets'', that is, subsets of connected edges of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]