Privacy-enhancing Technologies
   HOME
*





Privacy-enhancing Technologies
Privacy-enhancing technologies (PET) are technologies that embody fundamental data protection principles by minimizing personal data use, maximizing data security, and empowering individuals. PETs allow online users to protect the privacy of their personally identifiable information (PII), which is often provided to and handled by services or applications. PETs use techniques to minimize an information system's possession of personal data without losing functionality. Generally speaking, PETs can be categorized as hard and soft privacy technologies. Goals of PETs The objective of PETs is to protect personal data and assure technology users of two key privacy points: their own information is kept confidential, and management of data protection is a priority to the organizations who hold responsibility for any PII. PETs allow users to take one or more of the following actions related to personal data that is sent to and used by online service providers, merchants or other users ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

User (computing)
A user is a person who utilizes a computer or network service. A user often has a user account and is identified to the system by a username (or user name). Other terms for username include login name, screenname (or screen name), account name, nickname (or nick) and handle, which is derived from the identical citizens band radio term. Some software products provide services to other systems and have no direct end users. End user End users are the ultimate human users (also referred to as operators) of a software product. The end user stands in contrast to users who support or maintain the product such as sysops, database administrators and computer technicians. The term is used to abstract and distinguish those who only use the software from the developers of the system, who enhance the software for end users. In user-centered design, it also distinguishes the software operator from the client who pays for its development and other stakeholders who may not directly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peer-to-peer
Peer-to-peer (P2P) computing or networking is a distributed application architecture that partitions tasks or workloads between peers. Peers are equally privileged, equipotent participants in the network. They are said to form a peer-to-peer network of nodes. Peers make a portion of their resources, such as processing power, disk storage or network bandwidth, directly available to other network participants, without the need for central coordination by servers or stable hosts. Peers are both suppliers and consumers of resources, in contrast to the traditional client–server model in which the consumption and supply of resources are divided. While P2P systems had previously been used in many application domains, the architecture was popularized by the file sharing system Napster, originally released in 1999. The concept has inspired new structures and philosophies in many areas of human interaction. In such social contexts, peer-to-peer as a meme refers to the egalitarian so ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Blinding (cryptography)
In cryptography, blinding is a technique by which an agent can provide a service to (i.e., compute a function for) a client in an encoded form without knowing either the real input or the real output. Blinding techniques also have applications to preventing side-channel attacks on encryption devices. More precisely, Alice has an input ''x'' and Oscar has a function ''f''. Alice would like Oscar to compute for her without revealing either ''x'' or ''y'' to him. The reason for her wanting this might be that she doesn't know the function ''f'' or that she does not have the resources to compute it. Alice "blinds" the message by encoding it into some other input ''E''(''x''); the encoding ''E'' must be a bijection on the input space of ''f'', ideally a random permutation. Oscar gives her ''f''(''E''(''x'')), to which she applies a decoding ''D'' to obtain . Not all functions allow for blind computation. At other times, blinding must be applied with care. An example of the latter is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ciphertext
In cryptography, ciphertext or cyphertext is the result of encryption performed on plaintext using an algorithm, called a cipher. Ciphertext is also known as encrypted or encoded information because it contains a form of the original plaintext that is unreadable by a human or computer without the proper cipher to decrypt it. This process prevents the loss of sensitive information via hacking. Decryption, the inverse of encryption, is the process of turning ciphertext into readable plaintext. Ciphertext is not to be confused with codetext because the latter is a result of a code, not a cipher. Conceptual underpinnings Let m\! be the plaintext message that Alice wants to secretly transmit to Bob and let E_k\! be the encryption cipher, where _k\! is a cryptographic key. Alice must first transform the plaintext into ciphertext, c\!, in order to securely send the message to Bob, as follows: : c = E_k(m). \! In a symmetric-key system, Bob knows Alice's encryption key. Once the m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Format-preserving Encryption
In cryptography, format-preserving encryption (FPE), refers to encrypting in such a way that the output (the ciphertext) is in the same format as the input (the plaintext). The meaning of "format" varies. Typically only finite sets of characters are used; numeric, alphabetic or alphanumeric. For example: * Encrypting a 16-digit credit card number so that the ciphertext is another 16-digit number. * Encrypting an English word so that the ciphertext is another English word. * Encrypting an ''n''-bit number so that the ciphertext is another ''n''-bit number (this is the definition of an ''n''-bit block cipher). For such finite domains, and for the purposes of the discussion below, the cipher is equivalent to a permutation of ''N'' integers where ''N'' is the size of the domain. Motivation Restricted field lengths or formats One motivation for using FPE comes from the problems associated with integrating encryption into existing applications, with well-defined data models. A typical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Non-interactive Zero-knowledge Proof
Non-interactive zero-knowledge proofs are zero-knowledge proofs where information between a prover and a verifier can be authenticated by the prover, without revealing any of the specific information beyond the validity of the transaction itself. This function of encryption makes direct communication between the prover and verifier unnecessary, effectively removing any intermediaries. The core trustless cryptography "proofing" involves a hash function generation of a random number, constrained within mathematical parameters (primarily to modulate hashing difficulties) determined by the prover and verifier. With this cryptographic engine, the prover must demonstrate the validity of the transaction, by solving the hash of a random number. Finally, proof of the answer is returned to the verifier, without revealing its value. There are many different methods for establishing a cryptographic proof of hash validity. Perhaps the most notable method, proof of work, involves computing the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Digital Signature
A digital signature is a mathematical scheme for verifying the authenticity of digital messages or documents. A valid digital signature, where the prerequisites are satisfied, gives a recipient very high confidence that the message was created by a known sender (authenticity), and that the message was not altered in transit (integrity). Digital signatures are a standard element of most cryptographic protocol suites, and are commonly used for software distribution, financial transactions, contract management software, and in other cases where it is important to detect forgery or tampering. Digital signatures are often used to implement electronic signatures, which includes any electronic data that carries the intent of a signature, but not all electronic signatures use digital signatures.

[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ring Signature
In cryptography, a ring signature is a type of digital signature that can be performed by any member of a set of users that each have keys. Therefore, a message signed with a ring signature is endorsed by someone in a particular set of people. One of the security properties of a ring signature is that it should be computationally infeasible to determine ''which'' of the set's members' keys was used to produce the signature. Ring signatures are similar to group signatures but differ in two key ways: first, there is no way to revoke the anonymity of an individual signature; and second, any set of users can be used as a signing set without additional setup. Ring signatures were invented by Ron Rivest, Adi Shamir, and Yael Tauman Kalai, and introduced at ASIACRYPT in 2001. The name, ''ring signature'', comes from the ring-like structure of the signature algorithm. Definition Suppose that a set of entities each have public/private key pairs, (''P''1, ''S''1), (''P''2, ''S''2), ... ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Secure Multi-party Computation
Secure multi-party computation (also known as secure computation, multi-party computation (MPC) or privacy-preserving computation) is a subfield of cryptography with the goal of creating methods for parties to jointly compute a function over their inputs while keeping those inputs private. Unlike traditional cryptographic tasks, where cryptography assures security and integrity of communication or storage and the adversary is outside the system of participants (an eavesdropper on the sender and receiver), the cryptography in this model protects participants' privacy from each other. The foundation for secure multi-party computation started in the late 1970s with the work on mental poker, cryptographic work that simulates game playing/computational tasks over distances without requiring a trusted third party. Note that traditionally, cryptography was about concealing content, while this new type of computation and protocol is about concealing partial information about data while comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zero-knowledge Proof
In cryptography, a zero-knowledge proof or zero-knowledge protocol is a method by which one party (the prover) can prove to another party (the verifier) that a given statement is true while the prover avoids conveying any additional information apart from the fact that the statement is indeed true. The essence of zero-knowledge proofs is that it is trivial to prove that one possesses knowledge of certain information by simply revealing it; the challenge is to prove such possession without revealing the information itself or any additional information. If proving a statement requires that the prover possess some secret information, then the verifier will not be able to prove the statement to anyone else without possessing the secret information. The statement being proved must include the assertion that the prover has such knowledge, but without including or transmitting the knowledge itself in the assertion. Otherwise, the statement would not be proved in zero-knowledge because it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homomorphic Encryption
Homomorphic encryption is a form of encryption that permits users to perform computations on its encrypted data without first decrypting it. These resulting computations are left in an encrypted form which, when decrypted, result in an identical output to that produced had the operations been performed on the unencrypted data. Homomorphic encryption can be used for privacy-preserving outsourced storage and computation. This allows data to be encrypted and out-sourced to commercial cloud environments for processing, all while encrypted. For sensitive data, such as health care information, homomorphic encryption can be used to enable new services by removing privacy barriers inhibiting data sharing or increase security to existing services. For example, predictive analytics in health care can be hard to apply via a third party service provider due to medical data privacy concerns, but if the predictive analytics service provider can operate on encrypted data instead, these priva ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Public Key Infrastructure
A public key infrastructure (PKI) is a set of roles, policies, hardware, software and procedures needed to create, manage, distribute, use, store and revoke digital certificates and manage public-key encryption. The purpose of a PKI is to facilitate the secure electronic transfer of information for a range of network activities such as e-commerce, internet banking and confidential email. It is required for activities where simple passwords are an inadequate authentication method and more rigorous proof is required to confirm the identity of the parties involved in the communication and to validate the information being transferred. In cryptography, a PKI is an arrangement that ''binds'' public keys with respective identities of entities (like people and organizations). The binding is established through a process of registration and issuance of certificates at and by a certificate authority (CA). Depending on the assurance level of the binding, this may be carried out by an automa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]