Primary Extension
   HOME
*





Primary Extension
In field theory, a branch of algebra, a primary extension ''L'' of ''K'' is a field extension such that the algebraic closure of ''K'' in ''L'' is purely inseparable over ''K''.Fried & Jarden (2008) p.44 Properties * An extension ''L''/''K'' is primary if and only if it is linearly disjoint from the separable closure of ''K'' over ''K''. * A subextension of a primary extension is primary. * A primary extension of a primary extension is primary (transitivity). * Any extension of a separably closed field is primary. * An extension is regular if and only if it is separable and primary. * A primary extension of a perfect field In algebra, a field ''k'' is perfect if any one of the following equivalent conditions holds: * Every irreducible polynomial over ''k'' has distinct roots. * Every irreducible polynomial over ''k'' is separable. * Every finite extension of ''k'' is ... is regular. References * Field (mathematics) {{Abstract-algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Field Theory (mathematics)
Field theory may refer to: Science * Field (mathematics), the theory of the algebraic concept of field * Field theory (physics), a physical theory which employs fields in the physical sense, consisting of three types: ** Classical field theory, the theory and dynamics of classical fields ** Quantum field theory, the theory of quantum mechanical fields ** Statistical field theory, the theory of critical phase transitions **Grand unified theory Social science * Field theory (psychology) Field theory is a psychological theory (more precisely: Topological and vector psychology) which examines patterns of interaction between the individual and the total field, or environment. The concept first made its appearance in psychology with r ..., a psychological theory which examines patterns of interaction between the individual and his or her environment * Field theory (sociology), a sociological theory concerning the relationship between social actors and local social orders {{Disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Field Extension
In mathematics, particularly in algebra, a field extension is a pair of fields E\subseteq F, such that the operations of ''E'' are those of ''F'' restricted to ''E''. In this case, ''F'' is an extension field of ''E'' and ''E'' is a subfield of ''F''. For example, under the usual notions of addition and multiplication, the complex numbers are an extension field of the real numbers; the real numbers are a subfield of the complex numbers. Field extensions are fundamental in algebraic number theory, and in the study of polynomial roots through Galois theory, and are widely used in algebraic geometry. Subfield A subfield K of a field L is a subset K\subseteq L that is a field with respect to the field operations inherited from L. Equivalently, a subfield is a subset that contains 1, and is closed under the operations of addition, subtraction, multiplication, and taking the inverse of a nonzero element of K. As , the latter definition implies K and L have the same zero eleme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Purely Inseparable
In algebra, a purely inseparable extension of fields is an extension ''k'' ⊆ ''K'' of fields of characteristic ''p'' > 0 such that every element of ''K'' is a root of an equation of the form ''x''''q'' = ''a'', with ''q'' a power of ''p'' and ''a'' in ''k''. Purely inseparable extensions are sometimes called radicial extensions, which should not be confused with the similar-sounding but more general notion of radical extensions. Purely inseparable extensions An algebraic extension E\supseteq F is a ''purely inseparable extension'' if and only if for every \alpha\in E\setminus F, the minimal polynomial of \alpha over ''F'' is ''not'' a separable polynomial.Isaacs, p. 298 If ''F'' is any field, the trivial extension F\supseteq F is purely inseparable; for the field ''F'' to possess a ''non-trivial'' purely inseparable extension, it must be imperfect as outlined in the above section. Several equivalent and more concrete definitions for the notion of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Linearly Disjoint
In mathematics, algebras ''A'', ''B'' over a field ''k'' inside some field extension \Omega of ''k'' are said to be linearly disjoint over ''k'' if the following equivalent conditions are met: *(i) The map A \otimes_k B \to AB induced by (x, y) \mapsto xy is injective. *(ii) Any ''k''-basis of ''A'' remains linearly independent over ''B''. *(iii) If u_i, v_j are ''k''-bases for ''A'', ''B'', then the products u_i v_j are linearly independent over ''k''. Note that, since every subalgebra of \Omega is a domain, (i) implies A \otimes_k B is a domain (in particular reduced). Conversely if ''A'' and ''B'' are fields and either ''A'' or ''B'' is an algebraic extension of ''k'' and A \otimes_k B is a domain then it is a field and ''A'' and ''B'' are linearly disjoint. However, there are examples where A \otimes_k B is a domain but ''A'' and ''B'' are not linearly disjoint: for example, ''A'' = ''B'' = ''k''(''t''), the field of rational functions over ''k''. One also has: ''A'', ''B'' are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Separable Closure
In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky (1972) pp.74-76 or the weaker ultrafilter lemma, it can be shown that every field has an algebraic closure, and that the algebraic closure of a field ''K'' is unique up to an isomorphism that fixes every member of ''K''. Because of this essential uniqueness, we often speak of ''the'' algebraic closure of ''K'', rather than ''an'' algebraic closure of ''K''. The algebraic closure of a field ''K'' can be thought of as the largest algebraic extension of ''K''. To see this, note that if ''L'' is any algebraic extension of ''K'', then the algebraic closure of ''L'' is also an algebraic closure of ''K'', and so ''L'' is contained within the algebraic closure of ''K''. The algebraic closure of ''K'' is also the smallest algebraically closed fiel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Separably Closed Field
In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky (1972) pp.74-76 or the weaker ultrafilter lemma, it can be shown that every field has an algebraic closure, and that the algebraic closure of a field ''K'' is unique up to an isomorphism that fixes every member of ''K''. Because of this essential uniqueness, we often speak of ''the'' algebraic closure of ''K'', rather than ''an'' algebraic closure of ''K''. The algebraic closure of a field ''K'' can be thought of as the largest algebraic extension of ''K''. To see this, note that if ''L'' is any algebraic extension of ''K'', then the algebraic closure of ''L'' is also an algebraic closure of ''K'', and so ''L'' is contained within the algebraic closure of ''K''. The algebraic closure of ''K'' is also the smallest algebraically closed fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Extension
In field theory, a branch of algebra, a field extension L/k is said to be regular if ''k'' is algebraically closed in ''L'' (i.e., k = \hat k where \hat k is the set of elements in ''L'' algebraic over ''k'') and ''L'' is separable over ''k'', or equivalently, L \otimes_k \overline is an integral domain when \overline is the algebraic closure of k (that is, to say, L, \overline are linearly disjoint over ''k'').Fried & Jarden (2008) p.38Cohn (2003) p.425 Properties * Regularity is transitive: if ''F''/''E'' and ''E''/''K'' are regular then so is ''F''/''K''.Fried & Jarden (2008) p.39 * If ''F''/''K'' is regular then so is ''E''/''K'' for any ''E'' between ''F'' and ''K''. * The extension ''L''/''k'' is regular if and only if every subfield of ''L'' finitely generated over ''k'' is regular over ''k''. * Any extension of an algebraically closed field is regular.Cohn (2003) p.426 * An extension is regular if and only if it is separable and primary.Fried & Jarden (2008) p.44 * A purel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Perfect Field
In algebra, a field ''k'' is perfect if any one of the following equivalent conditions holds: * Every irreducible polynomial over ''k'' has distinct roots. * Every irreducible polynomial over ''k'' is separable. * Every finite extension of ''k'' is separable. * Every algebraic extension of ''k'' is separable. * Either ''k'' has characteristic 0, or, when ''k'' has characteristic , every element of ''k'' is a ''p''th power. * Either ''k'' has characteristic 0, or, when ''k'' has characteristic , the Frobenius endomorphism is an automorphism of ''k''. * The separable closure of ''k'' is algebraically closed. * Every reduced commutative ''k''-algebra ''A'' is a separable algebra; i.e., A \otimes_k F is reduced for every field extension ''F''/''k''. (see below) Otherwise, ''k'' is called imperfect. In particular, all fields of characteristic zero and all finite fields are perfect. Perfect fields are significant because Galois theory over these fields becomes simpler, since the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]