In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, particularly
abstract algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structur ...
, an algebraic closure of a
field ''K'' is an
algebraic extension of ''K'' that is
algebraically closed. It is one of many
closures in mathematics.
Using
Zorn's lemma
Zorn's lemma, also known as the Kuratowski–Zorn lemma, is a proposition of set theory. It states that a partially ordered set containing upper bounds for every chain (that is, every totally ordered subset) necessarily contains at least on ...
[McCarthy (1991) p.21][Kaplansky (1972) pp.74-76] or the weaker
ultrafilter lemma, it can be shown that
every field has an algebraic closure, and that the algebraic closure of a field ''K'' is unique
up to Two Mathematical object, mathematical objects and are called "equal up to an equivalence relation "
* if and are related by , that is,
* if holds, that is,
* if the equivalence classes of and with respect to are equal.
This figure of speech ...
an
isomorphism
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
that
fixes every member of ''K''. Because of this essential uniqueness, we often speak of ''the'' algebraic closure of ''K'', rather than ''an'' algebraic closure of ''K''.
The algebraic closure of a field ''K'' can be thought of as the largest algebraic extension of ''K''.
To see this, note that if ''L'' is any algebraic extension of ''K'', then the algebraic closure of ''L'' is also an algebraic closure of ''K'', and so ''L'' is contained within the algebraic closure of ''K''.
The algebraic closure of ''K'' is also the smallest algebraically closed field containing ''K'',
because if ''M'' is any algebraically closed field containing ''K'', then the elements of ''M'' that are
algebraic over ''K'' form an algebraic closure of ''K''.
The algebraic closure of a field ''K'' has the same
cardinality
The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thum ...
as ''K'' if ''K'' is infinite, and is
countably infinite
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbe ...
if ''K'' is finite.
[
]
Examples
*The fundamental theorem of algebra
The fundamental theorem of algebra, also called d'Alembert's theorem or the d'Alembert–Gauss theorem, states that every non-constant polynomial, constant single-variable polynomial with Complex number, complex coefficients has at least one comp ...
states that the algebraic closure of the field of real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s is the field of complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s.
*The algebraic closure of the field of rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example,
The set of all ...
s is the field of algebraic number
In mathematics, an algebraic number is a number that is a root of a function, root of a non-zero polynomial in one variable with integer (or, equivalently, Rational number, rational) coefficients. For example, the golden ratio (1 + \sqrt)/2 is ...
s.
*There are many countable algebraically closed fields within the complex numbers, and strictly containing the field of algebraic numbers; these are the algebraic closures of transcendental extensions of the rational numbers, e.g. the algebraic closure of Q(π).
*For a finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
of prime
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
power order ''q'', the algebraic closure is a countably infinite
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbe ...
field that contains a copy of the field of order ''q''''n'' for each positive integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
''n'' (and is in fact the union of these copies).[.]
Existence of an algebraic closure and splitting fields
Let be the set of all monic irreducible polynomial
In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted f ...
s in ''K'' 'x''
For each , introduce new variables where .
Let ''R'' be the polynomial ring over ''K'' generated by for all and all . Write
: