Polynomially Reflexive Space
   HOME
*





Polynomially Reflexive Space
In mathematics, a polynomially reflexive space is a Banach space ''X'', on which the space of all polynomials in each degree is a reflexive space. Given a multilinear functional ''M''''n'' of degree ''n'' (that is, ''M''''n'' is ''n''-linear), we can define a polynomial ''p'' as :p(x)=M_n(x,\dots,x) (that is, applying ''M''''n'' on the ''diagonal'') or any finite sum of these. If only ''n''-linear functionals are in the sum, the polynomial is said to be ''n''-homogeneous. We define the space ''P''''n'' as consisting of all ''n''-homogeneous polynomials. The ''P''1 is identical to the dual space, and is thus reflexive for all reflexive ''X''. This implies that reflexivity is a prerequisite for polynomial reflexivity. Relation to continuity of forms On a finite-dimensional linear space, a quadratic form ''x''↦''f''(''x'') is always a (finite) linear combination of products ''x''↦''g''(''x'') ''h''(''x'') of two linear functionals ''g'' and ''h''. Therefore, assuming tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orthonormal
In linear algebra, two vectors in an inner product space are orthonormal if they are orthogonal (or perpendicular along a line) unit vectors. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of unit length. An orthonormal set which forms a basis is called an orthonormal basis. Intuitive overview The construction of orthogonality of vectors is motivated by a desire to extend the intuitive notion of perpendicular vectors to higher-dimensional spaces. In the Cartesian plane, two vectors are said to be ''perpendicular'' if the angle between them is 90° (i.e. if they form a right angle). This definition can be formalized in Cartesian space by defining the dot product and specifying that two vectors in the plane are orthogonal if their dot product is zero. Similarly, the construction of the norm of a vector is motivated by a desire to extend the intuitive notion of the length of a vector to higher-dimensional spaces. In Cartesian ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tsirelson Space
In mathematics, especially in functional analysis, the Tsirelson space is the first example of a Banach space in which neither an lp space, ℓ ''p'' space nor a Sequence space#c and c0, ''c''0 space can be embedded. The Tsirelson space is reflexive space, reflexive. It was introduced by B. S. Tsirelson in 1974. The same year, Figiel and Johnson published a related article () where they used the notation ''T'' for the ''dual'' of Tsirelson's example. Today, the letter ''T'' is the standard notationsee for example , p. 8; , p. 95; ''The Handbook of the Geometry of Banach Spaces'', vol. 1, p. 276; vol. 2, p. 1060, 1649. for the dual of the original example, while the original Tsirelson example is denoted by ''T''*. In ''T''* or in ''T'', no subspace is isomorphic, as Banach space, to an ''ℓ'' ''p'' space, 1 ≤ ''p'' < ∞, or to ''c''0. All classical Banach spaces known to , spaces of continuous functions, of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quotient Space (linear Algebra)
In linear algebra, the quotient of a vector space ''V'' by a subspace ''N'' is a vector space obtained by "collapsing" ''N'' to zero. The space obtained is called a quotient space and is denoted ''V''/''N'' (read "''V'' mod ''N''" or "''V'' by ''N''"). Definition Formally, the construction is as follows. Let ''V'' be a vector space over a field ''K'', and let ''N'' be a subspace of ''V''. We define an equivalence relation ~ on ''V'' by stating that ''x'' ~ ''y'' if . That is, ''x'' is related to ''y'' if one can be obtained from the other by adding an element of ''N''. From this definition, one can deduce that any element of ''N'' is related to the zero vector; more precisely, all the vectors in ''N'' get mapped into the equivalence class of the zero vector. The equivalence class – or, in this case, the coset – of ''x'' is often denoted : 'x''= ''x'' + ''N'' since it is given by : 'x''= . The quotient space ''V''/''N'' is then defined as ''V''/~, the set of all equivale ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lp Space
In mathematics, the spaces are function spaces defined using a natural generalization of the Norm (mathematics)#p-norm, -norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue , although according to the Nicolas Bourbaki, Bourbaki group they were first introduced by Frigyes Riesz . spaces form an important class of Banach spaces in functional analysis, and of topological vector spaces. Because of their key role in the mathematical analysis of measure and probability spaces, Lebesgue spaces are used also in the theoretical discussion of problems in physics, statistics, economics, finance, engineering, and other disciplines. Applications Statistics In statistics, measures of central tendency and statistical dispersion, such as the mean, median, and standard deviation, are defined in terms of metrics, and measures of central tendency can be characterized as Central tendency#Solutions to variational problems, solutions to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Approximation Property
In mathematics, specifically functional analysis, a Banach space is said to have the approximation property (AP), if every compact operator is a limit of finite-rank operators. The converse is always true. Every Hilbert space has this property. There are, however, Banach spaces which do not; Per Enflo published the first counterexample in a 1973 article. However, much work in this area was done by Grothendieck (1955). Later many other counterexamples were found. The space of bounded operators on \ell^2 does not have the approximation property.Szankowski, A.B(H) does not have the approximation property.''Acta Math.'' 147, 89-108(1981). The spaces \ell^p for p\neq 2 and c_0 (see Sequence space) have closed subspaces that do not have the approximation property. Definition A locally convex topological vector space ''X'' is said to have the approximation property, if the identity map can be approximated, uniformly on precompact sets, by continuous linear maps of finite rank. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reflexive Space
In the area of mathematics known as functional analysis, a reflexive space is a locally convex topological vector space (TVS) for which the canonical evaluation map from X into its bidual (which is the strong dual of the strong dual of X) is an isomorphism of TVSs. Since a normable TVS is reflexive if and only if it is semi-reflexive, every normed space (and so in particular, every Banach space) X is reflexive if and only if the canonical evaluation map from X into its bidual is surjective; in this case the normed space is necessarily also a Banach space. In 1951, R. C. James discovered a Banach space, now known as James' space, that is reflexive but is nevertheless isometrically isomorphic to its bidual (any such isomorphism is thus necessarily the canonical evaluation map). Reflexive spaces play an important role in the general theory of locally convex TVSs and in the theory of Banach spaces in particular. Hilbert spaces are prominent examples of reflexive Banach spaces. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Function (topology)
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weak Convergence (Hilbert Space)
In mathematics, weak convergence in a Hilbert space is convergence of a sequence of points in the weak topology. Definition A sequence of points (x_n) in a Hilbert space ''H'' is said to converge weakly to a point ''x'' in ''H'' if :\langle x_n,y \rangle \to \langle x,y \rangle for all ''y'' in ''H''. Here, \langle \cdot, \cdot \rangle is understood to be the inner product on the Hilbert space. The notation :x_n \rightharpoonup x is sometimes used to denote this kind of convergence. Properties *If a sequence converges strongly (that is, if it converges in norm), then it converges weakly as well. *Since every closed and bounded set is weakly relatively compact (its closure in the weak topology is compact), every bounded sequence x_n in a Hilbert space ''H'' contains a weakly convergent subsequence. Note that closed and bounded sets are not in general weakly compact in Hilbert spaces (consider the set consisting of an orthonormal basis in an infinitely dimensional Hilbert space ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert Space
In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that defines a distance function for which the space is a complete metric space. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer), and ergodic theory (which forms the mathematical underpinning of thermodynamics). John von Neumann coined the term ''Hilbert space'' for the abstract concept that under ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Banach Space
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space. Banach spaces are named after the Polish mathematician Stefan Banach, who introduced this concept and studied it systematically in 1920–1922 along with Hans Hahn and Eduard Helly. Maurice René Fréchet was the first to use the term "Banach space" and Banach in turn then coined the term "Fréchet space." Banach spaces originally grew out of the study of function spaces by Hilbert, Fréchet, and Riesz earlier in the century. Banach spaces play a central role in functional analysis. In other areas of analysis, the spaces under study are often Banach spaces. Definition A Banach space is a complete norme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Functional
In mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear map from a vector space to its field of scalars (often, the real numbers or the complex numbers). If is a vector space over a field , the set of all linear functionals from to is itself a vector space over with addition and scalar multiplication defined pointwise. This space is called the dual space of , or sometimes the algebraic dual space, when a topological dual space is also considered. It is often denoted , p. 19, §3.1 or, when the field is understood, V^*; other notations are also used, such as V', V^ or V^. When vectors are represented by column vectors (as is common when a basis is fixed), then linear functionals are represented as row vectors, and their values on specific vectors are given by matrix products (with the row vector on the left). Examples * The constant zero function, mapping every vector to zero, is trivially a linear functional. * Indexing int ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]