Polynomial Expansion
   HOME
*



picture info

Polynomial Expansion
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a sum of (repeated) products. During the expansion, simplifications such as grouping of like terms or cancellations of terms may also be applied. Instead of multiplications, the expansion steps could also involve replacing powers of a sum of terms by the equivalent expression obtained from the binomial formula; this is a shortened form of what would happen if the power were treated as a repeated multiplication, and expanded repeatedly. It is customary to reintroduce powers in the final result when terms involve products of identical symbols. Simple examples of polynomial expansions are the wel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Distributive Property
In mathematics, the distributive property of binary operations generalizes the distributive law, which asserts that the equality x \cdot (y + z) = x \cdot y + x \cdot z is always true in elementary algebra. For example, in elementary arithmetic, one has 2 \cdot (1 + 3) = (2 \cdot 1) + (2 \cdot 3). One says that multiplication ''distributes'' over addition. This basic property of numbers is part of the definition of most algebraic structures that have two operations called addition and multiplication, such as complex numbers, polynomials, Matrix (mathematics), matrices, Ring (mathematics), rings, and Field (mathematics), fields. It is also encountered in Boolean algebra and mathematical logic, where each of the logical and (denoted \,\land\,) and the logical or (denoted \,\lor\,) distributes over the other. Definition Given a Set (mathematics), set S and two binary operators \,*\, and \,+\, on S, *the operation \,*\, is over (or with respect to) \,+\, if, given any elements x ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polynomial Expression
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, often a field. Often, the term "polynomial ring" refers implicitly to the special case of a polynomial ring in one indeterminate over a field. The importance of such polynomial rings relies on the high number of properties that they have in common with the ring of the integers. Polynomial rings occur and are often fundamental in many parts of mathematics such as number theory, commutative algebra, and algebraic geometry. In ring theory, many classes of rings, such as unique factorization domains, regular rings, group rings, rings of formal power series, Ore polynomials, graded rings, have been introduced for generalizing some properties of polynomial rings. A closely related notion is that of the ring ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binomial Formula
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial into a sum involving terms of the form , where the exponents and are nonnegative integers with , and the coefficient of each term is a specific positive integer depending on and . For example, for , (x+y)^4 = x^4 + 4 x^3y + 6 x^2 y^2 + 4 x y^3 + y^4. The coefficient in the term of is known as the binomial coefficient \tbinom or \tbinom (the two have the same value). These coefficients for varying and can be arranged to form Pascal's triangle. These numbers also occur in combinatorics, where \tbinom gives the number of different combinations of elements that can be chosen from an -element set. Therefore \tbinom is often pronounced as " choose ". History Special cases of the binomial theorem were known since at least the 4th century BC when Greek mathematician Euclid ment ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Horner Scheme
In mathematics and computer science, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation. Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian mathematicians. After the introduction of computers, this algorithm became fundamental for computing efficiently with polynomials. The algorithm is based on Horner's rule: :\begin a_0 &+ a_1x + a_2x^2 + a_3x^3 + \cdots + a_nx^n \\ &= a_0 + x \bigg(a_1 + x \Big(a_2 + x \big(a_3 + \cdots + x(a_ + x \, a_n) \cdots \big) \Big) \bigg). \end This allows the evaluation of a polynomial of degree with only n multiplications and n additions. This is optimal, since there are polynomials of degree that cannot be evaluated with fewer arithmetic operations. Alternatively, Horner's method also refers to a method for approximating the roots of polynomials, described by Ho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polynomial Factorization
In mathematics and computer algebra, factorization of polynomials or polynomial factorization expresses a polynomial with coefficients in a given field (mathematics), field or in the integers as the product of irreducible polynomial, irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental components of computer algebra systems. The first polynomial factorization algorithm was published by Theodor von Schubert in 1793. Leopold Kronecker rediscovered Schubert's algorithm in 1882 and extended it to multivariate polynomials and coefficients in an algebraic extension. But most of the knowledge on this topic is not older than circa 1965 and the first computer algebra systems: When the long-known finite step algorithms were first put on computers, they turned out to be highly inefficient. The fact that almost any uni- or multivariate polynomial of degree up to 100 and with coefficients of a moderate size (up to 100 bits) can be facto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polynomial Expansion
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a sum of (repeated) products. During the expansion, simplifications such as grouping of like terms or cancellations of terms may also be applied. Instead of multiplications, the expansion steps could also involve replacing powers of a sum of terms by the equivalent expression obtained from the binomial formula; this is a shortened form of what would happen if the power were treated as a repeated multiplication, and expanded repeatedly. It is customary to reintroduce powers in the final result when terms involve products of identical symbols. Simple examples of polynomial expansions are the wel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Binomial (polynomial)
In algebra, a binomial is a polynomial that is the sum of two terms, each of which is a monomial. It is the simplest kind of sparse polynomial after the monomials. Definition A binomial is a polynomial which is the sum of two monomials. A binomial in a single indeterminate (also known as a univariate binomial) can be written in the form :a x^m - bx^n \,, where and are numbers, and and are distinct nonnegative integers and is a symbol which is called an indeterminate or, for historical reasons, a variable. In the context of Laurent polynomials, a ''Laurent binomial'', often simply called a ''binomial'', is similarly defined, but the exponents and may be negative. More generally, a binomial may be written as: :a x_1^\dotsb x_i^ - b x_1^\dotsb x_i^ Examples :3x - 2x^2 :xy + yx^2 :0.9 x^3 + \pi y^2 :2 x^3 + 7 Operations on simple binomials *The binomial can be factored as the product of two other binomials: :: x^2 - y^2 = (x - y)(x + y). :This is a special case of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


FOIL Rule
In secondary school, ''FOIL'' is a mnemonic for the standard method of multiplying two binomials—hence the method may be referred to as the FOIL method. The word ''FOIL'' is an acronym for the four terms of the product: * First ("first" terms of each binomial are multiplied together) * Outer ("outside" terms are multiplied—that is, the first term of the first binomial and the second term of the second) * Inner ("inside" terms are multiplied—second term of the first binomial and first term of the second) * Last ("last" terms of each binomial are multiplied) The general form is : (a + b)(c + d) = \underbrace_\text + \underbrace_\text + \underbrace_\text + \underbrace_\text. Note that is both a "first" term and an "outer" term; is both a "last" and "inner" term, and so forth. The order of the four terms in the sum is not important and need not match the order of the letters in the word FOIL. History The FOIL method is a special case of a more general method for multip ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pascal's Triangle
In mathematics, Pascal's triangle is a triangular array of the binomial coefficients that arises in probability theory, combinatorics, and algebra. In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in India, Persia, China, Germany, and Italy. The rows of Pascal's triangle are conventionally enumerated starting with row n = 0 at the top (the 0th row). The entries in each row are numbered from the left beginning with k = 0 and are usually staggered relative to the numbers in the adjacent rows. The triangle may be constructed in the following manner: In row 0 (the topmost row), there is a unique nonzero entry 1. Each entry of each subsequent row is constructed by adding the number above and to the left with the number above and to the right, treating blank entries as 0. For example, the initial number of row 1 (or any other row) is 1 (the sum of 0 and 1), whereas the numbers 1 and 3 in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polynomial Factorization
In mathematics and computer algebra, factorization of polynomials or polynomial factorization expresses a polynomial with coefficients in a given field (mathematics), field or in the integers as the product of irreducible polynomial, irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental components of computer algebra systems. The first polynomial factorization algorithm was published by Theodor von Schubert in 1793. Leopold Kronecker rediscovered Schubert's algorithm in 1882 and extended it to multivariate polynomials and coefficients in an algebraic extension. But most of the knowledge on this topic is not older than circa 1965 and the first computer algebra systems: When the long-known finite step algorithms were first put on computers, they turned out to be highly inefficient. The fact that almost any uni- or multivariate polynomial of degree up to 100 and with coefficients of a moderate size (up to 100 bits) can be facto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Factorization
In mathematics, factorization (or factorisation, see American and British English spelling differences#-ise, -ize (-isation, -ization), English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several ''factors'', usually smaller or simpler objects of the same kind. For example, is a factorization of the integer , and is a factorization of the polynomial . Factorization is not usually considered meaningful within number systems possessing division ring, division, such as the real number, real or complex numbers, since any x can be trivially written as (xy)\times(1/y) whenever y is not zero. However, a meaningful factorization for a rational number or a rational function can be obtained by writing it in lowest terms and separately factoring its numerator and denominator. Factorization was first considered by Greek mathematics, ancient Greek mathematicians in the case of integers. They proved the fundamental theorem o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]