Polymake
   HOME
*





Polymake
polymake is software for the algorithmic treatment of convex polyhedra. Albeit primarily a tool to study the combinatorics and the geometry of convex polytopes and polyhedra, it is by now also capable of dealing with simplicial complexes, matroids, polyhedral fans, graphs, tropical objects, toric varieties and other objects. In particular, its capability to compute the convex hull and lattice points of a polytope proved itself to be of quiet use for different kinds of research. polymake has been cited in over 300 recent articles indexed by Zentralblatt MATH as can be seen from its entry in the swMATH database. Special features and applications polymake exhibits a few particularities, making it special to work with. Firstly, polymake can be used within a Perl script. Moreover, users can extend polymake and define new objects, properties, rules for computing properties, and algorithms. Secondly, it exhibits an internal client-server scheme to accommodate the usage of Perl for o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Perl
Perl is a family of two high-level, general-purpose, interpreted, dynamic programming languages. "Perl" refers to Perl 5, but from 2000 to 2019 it also referred to its redesigned "sister language", Perl 6, before the latter's name was officially changed to Raku in October 2019. Though Perl is not officially an acronym, there are various backronyms in use, including "Practical Extraction and Reporting Language". Perl was developed by Larry Wall in 1987 as a general-purpose Unix scripting language to make report processing easier. Since then, it has undergone many changes and revisions. Raku, which began as a redesign of Perl 5 in 2000, eventually evolved into a separate language. Both languages continue to be developed independently by different development teams and liberally borrow ideas from each other. The Perl languages borrow features from other programming languages including C, sh, AWK, and sed; They provide text processing facilities without the arbitrary data-le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Planar Graph
In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph or planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points. Every graph that can be drawn on a plane can be drawn on the sphere as well, and vice versa, by means of stereographic projection. Plane graphs can be encoded by combinatorial maps or rotation systems. An equivalence class of topologically equivalent drawings on the sphere, usually with additional assumptions such as the absence of isthmuses, is called a pl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fundamental Group
In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent (or the stronger case of homeomorphic) have isomorphic fundamental groups. The fundamental group of a topological space X is denoted by \pi_1(X). Intuition Start with a space (for example, a surface), and some point in it, and all the loops both starting and ending at this point— paths that start at this point, wander around and eventually return to the starting point. Two loops can be combined in an obvious way: travel along the first loop, then along the second. Two loops are considered equivalent if one can be deformed into the other without breakin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homology (mathematics)
In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry. The original motivation for defining homology groups was the observation that two shapes can be distinguished by examining their holes. For instance, a circle is not a disk because the circle has a hole through it while the disk is solid, and the ordinary sphere is not a circle because the sphere encloses a two-dimensional hole while the circle encloses a one-dimensional hole. However, because a hole is "not there", it is not immediately obvious how to define a hole or how to distinguish different kinds of holes. Homology was originally a rigorous mathematical method for defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abstract Simplicial Complex
In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely combinatorial description of the geometric notion of a simplicial complex. Lee, John M., Introduction to Topological Manifolds, Springer 2011, , p153 For example, in a 2-dimensional simplicial complex, the sets in the family are the triangles (sets of size 3), their edges (sets of size 2), and their vertices (sets of size 1). In the context of matroids and greedoids, abstract simplicial complexes are also called independence systems. An abstract simplex can be studied algebraically by forming its Stanley–Reisner ring; this sets up a powerful relation between combinatorics and commutative algebra. Definitions A collection of non-empty finite subsets of a set ''S'' is called a set-family. A set-family is called an abstract simplicial c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schlegel Diagram
In geometry, a Schlegel diagram is a projection of a polytope from \mathbb^d into \mathbb^ through a point just outside one of its facets. The resulting entity is a polytopal subdivision of the facet in \mathbb^ that, together with the original facet, is combinatorially equivalent to the original polytope. The diagram is named for Victor Schlegel, who in 1886 introduced this tool for studying combinatorial and topological properties of polytopes. In dimension 3, a Schlegel diagram is a projection of a polyhedron into a plane figure; in dimension 4, it is a projection of a 4-polytope to 3-space. As such, Schlegel diagrams are commonly used as a means of visualizing four-dimensional polytopes. Construction The most elementary Schlegel diagram, that of a polyhedron, was described by Duncan Sommerville as follows: :A very useful method of representing a convex polyhedron is by plane projection. If it is projected from any external point, since each ray cuts it twice, it will be r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert Basis (linear Programming)
The Hilbert basis of a convex cone ''C'' is a minimal set of integer vectors such that every integer vector in ''C'' is a conical combination of the vectors in the Hilbert basis with integer coefficients. Definition Given a lattice L\subset\mathbb^d and a convex polyhedral cone with generators a_1,\ldots,a_n\in\mathbb^d :C=\\subset\mathbb^d we consider the monoid C\cap L. By Gordan's lemma Gordan's lemma is a lemma in convex geometry and algebraic geometry. It can be stated in several ways. * Let A be a matrix of integers. Let M be the set of non-negative integer solutions of A \cdot x = 0. Then there exists a finite subset of vector ... this monoid is finitely generated, i.e., there exists a finite set of lattice points \\subset C\cap L such that every lattice point x\in C\cap L is an integer conical combination of these points: : x=\lambda_1 x_1+\ldots+\lambda_m x_m, \quad\lambda_1,\ldots,\lambda_m\in\mathbb, \lambda_1,\ldots,\lambda_m\geq0 The cone ''C'' is called pointed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ehrhart Polynomial
In mathematics, an integral polytope has an associated Ehrhart polynomial that encodes the relationship between the volume of a polytope and the number of integer points the polytope contains. The theory of Ehrhart polynomials can be seen as a higher-dimensional generalization of Pick's theorem in the Euclidean plane. These polynomials are named after Eugène Ehrhart who studied them in the 1960s. Definition Informally, if is a polytope, and is the polytope formed by expanding by a factor of in each dimension, then is the number of integer lattice points in . More formally, consider a lattice \mathcal in Euclidean space \R^n and a -dimensional polytope in \R^n with the property that all vertices of the polytope are points of the lattice. (A common example is \mathcal = \Z^n and a polytope for which all vertices have integer coordinates.) For any positive integer , let be the -fold dilation of (the polytope formed by multiplying each vertex coordinate, in a basis for the la ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


H-vector
In algebraic combinatorics, the ''h''-vector of a simplicial polytope is a fundamental invariant of the polytope which encodes the number of faces of different dimensions and allows one to express the Dehn–Sommerville equations in a particularly simple form. A characterization of the set of ''h''-vectors of simplicial polytopes was conjectured by Peter McMullen and proved by Lou Billera and Carl W. Lee and Richard Stanley ( ''g''-theorem). The definition of ''h''-vector applies to arbitrary abstract simplicial complexes. The ''g''-conjecture stated that for simplicial spheres, all possible ''h''-vectors occur already among the ''h''-vectors of the boundaries of convex simplicial polytopes. It was proven in December 2018 by Karim Adiprasito. Stanley introduced a generalization of the ''h''-vector, the toric ''h''-vector, which is defined for an arbitrary ranked poset, and proved that for the class of Eulerian posets, the Dehn–Sommerville equations continue to hold. A different ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Radical Ideal
In ring theory, a branch of mathematics, the radical of an ideal I of a commutative ring is another ideal defined by the property that an element x is in the radical if and only if some power of x is in I. Taking the radical of an ideal is called ''radicalization''. A radical ideal (or semiprime ideal) is an ideal that is equal to its radical. The radical of a primary ideal is a prime ideal. This concept is generalized to non-commutative rings in the Semiprime ring article. Definition The radical of an ideal I in a commutative ring R, denoted by \operatorname(I) or \sqrt, is defined as :\sqrt = \left\, (note that I \subset \sqrt). Intuitively, \sqrt is obtained by taking all roots of elements of I within the ring R. Equivalently, \sqrt is the preimage of the ideal of nilpotent elements (the nilradical) of the quotient ring R/I (via the natural map \pi\colon R\to R/I). The latter proves that \sqrt is an ideal.Here is a direct proof that \sqrt is an ideal. Start with a,b\in\sqr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert Polynomial
In commutative algebra, the Hilbert function, the Hilbert polynomial, and the Hilbert series of a graded commutative algebra finitely generated over a field are three strongly related notions which measure the growth of the dimension of the homogeneous components of the algebra. These notions have been extended to filtered algebras, and graded or filtered modules over these algebras, as well as to coherent sheaves over projective schemes. The typical situations where these notions are used are the following: * The quotient by a homogeneous ideal of a multivariate polynomial ring, graded by the total degree. * The quotient by an ideal of a multivariate polynomial ring, filtered by the total degree. * The filtration of a local ring by the powers of its maximal ideal. In this case the Hilbert polynomial is called the Hilbert–Samuel polynomial. The Hilbert series of an algebra or a module is a special case of the Hilbert–Poincaré series of a graded vector space. The Hilbert ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gröbner Basis
In mathematics, and more specifically in computer algebra, computational algebraic geometry, and computational commutative algebra, a Gröbner basis is a particular kind of generating set of an ideal in a polynomial ring over a field . A Gröbner basis allows many important properties of the ideal and the associated algebraic variety to be deduced easily, such as the dimension and the number of zeros when it is finite. Gröbner basis computation is one of the main practical tools for solving systems of polynomial equations and computing the images of algebraic varieties under projections or rational maps. Gröbner basis computation can be seen as a multivariate, non-linear generalization of both Euclid's algorithm for computing polynomial greatest common divisors, and Gaussian elimination for linear systems. Gröbner bases were introduced in 1965, together with an algorithm to compute them (Buchberger's algorithm), by Bruno Buchberger in his Ph.D. thesis. He named them after h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]