Poincaré Residue
   HOME
*





Poincaré Residue
In mathematics, the Poincaré residue is a generalization, to several complex variables and complex manifold theory, of the residue at a pole of complex function theory. It is just one of a number of such possible extensions. Given a hypersurface X \subset \mathbb^n defined by a degree d polynomial F and a rational n-form \omega on \mathbb^n with a pole of order k > 0 on X, then we can construct a cohomology class \operatorname(\omega) \in H^(X;\mathbb). If n=1 we recover the classical residue construction. Historical construction When Poincaré first introduced residues he was studying period integrals of the form\underset\iint \omega for \Gamma \in H_2(\mathbb^2 - D)where \omega was a rational differential form with poles along a divisor D. He was able to make the reduction of this integral to an integral of the form\int_\gamma \text(\omega) for \gamma \in H_1(D)where \Gamma = T(\gamma), sending \gamma to the boundary of a solid \varepsilon-tube around \gamma on the smooth locus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Several Complex Variable
The theory of functions of several complex variables is the branch of mathematics dealing with complex number, complex-valued functions. The name of the field dealing with the properties of function of several complex variables is called several complex variables (and analytic space), that has become a common name for that whole field of study and Mathematics Subject Classification has, as a top-level heading. A function (mathematics), function f:(z_1,z_2, \ldots, z_n) \rightarrow f(z_1,z_2, \ldots, z_n) is -tuples of complex numbers, classically studied on #The complex coordinate space, the complex coordinate space \Complex^n. As in complex analysis, complex analysis of functions of one variable, which is the case , the functions studied are ''holomorphic function, holomorphic'' or ''complex analytic'' so that, locally, they are power series in the variables . Equivalently, they are locally uniform convergence, uniform limits of polynomials; or locally Lp space, square-integrable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Manifold
In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a complex manifold in the sense above (which can be specified as an integrable complex manifold), and an almost complex manifold. Implications of complex structure Since holomorphic functions are much more rigid than smooth functions, the theories of smooth and complex manifolds have very different flavors: compact complex manifolds are much closer to algebraic varieties than to differentiable manifolds. For example, the Whitney embedding theorem tells us that every smooth ''n''-dimensional manifold can be embedded as a smooth submanifold of R2''n'', whereas it is "rare" for a complex manifold to have a holomorphic embedding into C''n''. Consider for example any compact connected complex manifold ''M'': any holomorphic function on it is cons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Residue At A Pole
In mathematics, more specifically complex analysis, the residue is a complex number proportional to the contour integral of a meromorphic function along a path enclosing one of its singularities. (More generally, residues can be calculated for any function f\colon \mathbb \setminus \_k \rightarrow \mathbb that is holomorphic except at the discrete points ''k'', even if some of them are essential singularities.) Residues can be computed quite easily and, once known, allow the determination of general contour integrals via the residue theorem. Definition The residue of a meromorphic function f at an isolated singularity a, often denoted \operatorname(f,a), \operatorname_a(f), \mathop_f(z) or \mathop_f(z), is the unique value R such that f(z)- R/(z-a) has an analytic antiderivative in a punctured disk 0<\vert z-a\vert<\delta. Alternatively, residues can be calculated by finding



Complex Function Theory
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, applied mathematics; as well as in physics, including the branches of hydrodynamics, thermodynamics, and particularly quantum mechanics. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering. As a differentiable function of a complex variable is equal to its Taylor series (that is, it is analytic), complex analysis is particularly concerned with analytic functions of a complex variable (that is, holomorphic functions). History Complex analysis is one of the classical branches in mathematics, with roots in the 18th century and just prior. Important mathematicians associated with complex numbers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacobian Ideal
In mathematics the Jacobian ideal or gradient ideal is the ideal generated by the Jacobian of a function or function germ. Let \mathcal(x_1,\ldots,x_n) denote the ring of smooth functions in n variables and f a function in the ring. The Jacobian ideal of f is : J_f := \left\langle \frac, \ldots, \frac \right\rangle. Relation to deformation theory In deformation theory, the deformations of a hypersurface given by a polynomial f is classified by the ring \frac This is shown using the Kodaira–Spencer map. Relation to Hodge theory In Hodge theory, there are objects called real Hodge structures which are the data of a real vector space H_\mathbb and an increasing filtration F^\bullet of H_\mathbb = H_\mathbb\otimes_\mathbb satisfying a list of compatibility structures. For a smooth projective variety X there is a canonical Hodge structure. Statement for degree d hypersurfaces In the special case X is defined by a homogeneous degree d polynomial f \in \Gamma(\mathbb^,\ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Leray Residue
Leray or LeRay is a surname. Notable people with the surname include: *David Leray (born 1984), French footballer *Francis Xavier Leray (1825–1887), American prelate of the Roman Catholic Church * Jean Leray (1906–1998), French mathematician *Marie-Pierre Leray Marie-Pierre Leray (born 17 February 1975) is a French former competitive figure skater. In ladies' singles, she placed seventh at the 1994 World Championships and 14th at the 1994 Winter Olympics. As a pair skater, she won the 1993 French nati ... (born 1975), French figure skater See also * Le Ray (other) {{surname ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bott Residue
In mathematics, the Bott residue formula, introduced by , describes a sum over the fixed points of a holomorphic vector field of a compact complex manifold. Statement If ''v'' is a holomorphic vector field on a compact complex manifold ''M'', then : \sum_\frac = \int_M P(i\Theta/2\pi) where *The sum is over the fixed points ''p'' of the vector field ''v'' *The linear transformation ''A''''p'' is the action induced by ''v'' on the holomorphic tangent space at ''p'' *''P'' is an invariant polynomial function of matrices of degree dim(''M'') *Θ is a curvature matrix of the holomorphic tangent bundle See also *Atiyah–Bott fixed-point theorem *Holomorphic Lefschetz fixed-point formula References * *{{Citation , last1=Griffiths , first1=Phillip , author1-link=Phillip Griffiths , last2=Harris , first2=Joseph , author2-link=Joe Harris (mathematician) , title=Principles of algebraic geometry , publisher=John Wiley & Sons John Wiley & Sons, Inc., commonly known as Wiley ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sheaf Of Logarithmic Differential Forms
In contexts including complex manifolds and algebraic geometry, a logarithmic differential form is a meromorphic differential form with poles of a certain kind. The concept was introduced by Deligne. Let ''X'' be a complex manifold, ''D'' ⊂ ''X'' a divisor, and ω a holomorphic ''p''-form on ''X''−''D''. If ω and ''d''ω have a pole of order at most one along ''D'', then ω is said to have a logarithmic pole along ''D''. ω is also known as a logarithmic ''p''-form. The logarithmic ''p''-forms make up a subsheaf of the meromorphic ''p''-forms on ''X'' with a pole along ''D'', denoted :\Omega^p_X(\log D). In the theory of Riemann surfaces, one encounters logarithmic one-forms which have the local expression :\omega = \frac =\left(\frac + \frac\right)dz for some meromorphic function (resp. rational function) f(z) = z^mg(z) , where ''g'' is holomorphic and non-vanishing at 0, and ''m'' is the order of ''f'' at ''0''. That is, for some open covering, there are local represe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Crossing Singularity
In algebraic geometry a normal crossing singularity is a singularity similar to a union of coordinate hyperplanes. The term can be confusing because normal crossing singularities are not usually normal schemes (in the sense of the local rings being integrally closed). Normal crossing divisors In algebraic geometry, normal crossing divisors are a class of divisors which generalize the smooth divisors. Intuitively they cross only in a transversal way. Let ''A'' be an algebraic variety, and Z= \bigcup_i Z_i a reduced Cartier divisor, with Z_i its irreducible components. Then ''Z'' is called a smooth normal crossing divisor if either :(i) ''A'' is a curve, or :(ii) all Z_i are smooth, and for each component Z_k, (Z-Z_k), _ is a smooth normal crossing divisor. Equivalently, one says that a reduced divisor has normal crossings if each point étale locally looks like the intersection of coordinate hyperplanes. Normal crossing singularity In algebraic geometry a normal crossings sin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adjunction Formula
In mathematics, especially in algebraic geometry and the theory of complex manifolds, the adjunction formula relates the canonical bundle of a variety and a hypersurface inside that variety. It is often used to deduce facts about varieties embedded in well-behaved spaces such as projective space or to prove theorems by induction. Adjunction for smooth varieties Formula for a smooth subvariety Let ''X'' be a smooth algebraic variety or smooth complex manifold and ''Y'' be a smooth subvariety of ''X''. Denote the inclusion map by ''i'' and the ideal sheaf of ''Y'' in ''X'' by \mathcal. The conormal exact sequence for ''i'' is :0 \to \mathcal/\mathcal^2 \to i^*\Omega_X \to \Omega_Y \to 0, where Ω denotes a cotangent bundle. The determinant of this exact sequence is a natural isomorphism :\omega_Y = i^*\omega_X \otimes \operatorname(\mathcal/\mathcal^2)^\vee, where \vee denotes the dual of a line bundle. The particular case of a smooth divisor Suppose that ''D'' is a smooth diviso ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]