Planar Separator Theorem
   HOME



picture info

Planar Separator Theorem
In graph theory, the planar separator theorem is a form of isoperimetric inequality for planar graphs, that states that any planar graph can be split into smaller pieces by removing a small number of vertices. Specifically, the removal of vertices from an -vertex graph (where the invokes big O notation) can partition the graph into disjoint subgraphs each of which has at most vertices. A weaker form of the separator theorem with vertices in the separator instead of was originally proven by , and the form with the tight asymptotic bound on the separator size was first proven by . Since their work, the separator theorem has been reproven in several different ways, the constant in the term of the theorem has been improved, and it has been extended to certain classes of nonplanar graphs. Repeated application of the separator theorem produces a separator hierarchy which may take the form of either a tree decomposition or a branch-decomposition of the graph. Separator hierarchi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') which are connected by ''Glossary of graph theory terms#edge, edges'' (also called ''arcs'', ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a Set (mathematics), set of vertices (also called nodes or points); * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

System Of Linear Equations
In mathematics, a system of linear equations (or linear system) is a collection of two or more linear equations involving the same variable (math), variables. For example, : \begin 3x+2y-z=1\\ 2x-2y+4z=-2\\ -x+\fracy-z=0 \end is a system of three equations in the three variables . A ''Solution (mathematics), solution'' to a linear system is an assignment of values to the variables such that all the equations are simultaneously satisfied. In the example above, a solution is given by the Tuple, ordered triple (x,y,z)=(1,-2,-2), since it makes all three equations valid. Linear systems are a fundamental part of linear algebra, a subject used in most modern mathematics. Computational algorithms for finding the solutions are an important part of numerical linear algebra, and play a prominent role in engineering, physics, chemistry, computer science, and economics. A Nonlinear system, system of non-linear equations can often be Approximation, approximated by a linear system (see linea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Menger's Theorem
In the mathematical discipline of graph theory, Menger's theorem says that in a finite graph, the size of a minimum cut set is equal to the maximum number of disjoint paths that can be found between any pair of vertices. Proved by Karl Menger in 1927, it characterizes the connectivity of a graph. It is generalized by the max-flow min-cut theorem, which is a weighted, edge version, and which in turn is a special case of the strong duality theorem for linear programs. Edge connectivity The edge-connectivity version of Menger's theorem is as follows: :Let ''G'' be a finite undirected graph and ''x'' and ''y'' two distinct vertices. Then the size of the minimum edge cut for ''x'' and ''y'' (the minimum number of edges whose removal disconnects ''x'' and ''y'') is equal to the maximum number of pairwise edge-disjoint paths from ''x'' to ''y''. The implication for the graph ''G'' is the following version: :A graph is ''k''-edge-connected (it remains connected after removing fe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Time
In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is gene ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Median
The median of a set of numbers is the value separating the higher half from the lower half of a Sample (statistics), data sample, a statistical population, population, or a probability distribution. For a data set, it may be thought of as the “middle" value. The basic feature of the median in describing data compared to the Arithmetic mean, mean (often simply described as the "average") is that it is not Skewness, skewed by a small proportion of extremely large or small values, and therefore provides a better representation of the center. Median income, for example, may be a better way to describe the center of the income distribution because increases in the largest incomes alone have no effect on the median. For this reason, the median is of central importance in robust statistics. Median is a 2-quantile; it is the value that partitions a set into two equal parts. Finite set of numbers The median of a finite list of numbers is the "middle" number, when those numbers are liste ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Breadth-first Search
Breadth-first search (BFS) is an algorithm for searching a tree data structure for a node that satisfies a given property. It starts at the tree root and explores all nodes at the present depth prior to moving on to the nodes at the next depth level. Extra memory, usually a queue, is needed to keep track of the child nodes that were encountered but not yet explored. For example, in a chess endgame, a chess engine may build the game tree from the current position by applying all possible moves and use breadth-first search to find a win position for White. Implicit trees (such as game trees or other problem-solving trees) may be of infinite size; breadth-first search is guaranteed to find a solution node if one exists. In contrast, (plain) depth-first search (DFS), which explores the node branch as far as possible before backtracking and expanding other nodes, may get lost in an infinite branch and never make it to the solution node. Iterative deepening depth-first search ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Grid Graph
In graph theory, a lattice graph, mesh graph, or grid graph is a Graph (discrete mathematics), graph whose graph drawing, drawing, Embedding, embedded in some Euclidean space , forms a regular tiling. This implies that the group (mathematics), group of Bijection, bijective transformations that send the graph to itself is a lattice (group), lattice in the group-theoretical sense. Typically, no clear distinction is made between such a graph in the more abstract sense of graph theory, and its drawing in space (often the plane or 3D space). This type of graph may more shortly be called just a lattice, mesh, or grid. Moreover, these terms are also commonly used for a finite section of the infinite graph, as in "an 8 × 8 square grid". The term lattice graph has also been given in the literature to various other kinds of graphs with some regular structure, such as the Cartesian product of graphs, Cartesian product of a number of complete graphs. Square grid graph A comm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Grid Separator
Grid, The Grid, or GRID may refer to: Space partitioning * Regular grid, a tessellation of space with translational symmetry, typically formed from parallelograms or higher-dimensional analogs ** Grid graph, a graph structure with nodes connected in a regular grid ** Square grid, a grid of squares ** Triangular grid, a grid of triangles ** Hexagonal grid, a grid of hexagons ** Unstructured grid, a tessellation of a space by simple shapes such as triangles or tetrahedra in an irregular pattern * Grid reference system, a coordinate system relative to a particular map projection * Grid (spatial index), a discretization of a geometric domain into a set of contiguous cells, used to organize information ** Discrete global grid (DGG), a grid that covers the entire Earth's surface * Grid (graphic design) (or typographic grid), organized lines for guiding graphic design * Grid plan, a city design with streets running at right angles * Grid paper, paper with a regular grid printed on it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Open Interval
In mathematics, a real interval is the set (mathematics), set of all real numbers lying between two fixed endpoints with no "gaps". Each endpoint is either a real number or positive or negative infinity, indicating the interval extends without a Bounded set, bound. A real interval can contain neither endpoint, either endpoint, or both endpoints, excluding any endpoint which is infinite. For example, the set of real numbers consisting of , , and all numbers in between is an interval, denoted and called the unit interval; the set of all positive real numbers is an interval, denoted ; the set of all real numbers is an interval, denoted ; and any single real number is an interval, denoted . Intervals are ubiquitous in mathematical analysis. For example, they occur implicitly in the epsilon-delta definition of continuity; the intermediate value theorem asserts that the image of an interval by a continuous function is an interval; integrals of real functions are defined over an int ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Connected Graph
In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into two or more isolated subgraphs. It is closely related to the theory of network flow problems. The connectivity of a graph is an important measure of its resilience as a network. Connected vertices and graphs In an undirected graph , two vertices and are called connected if contains a path from to . Otherwise, they are called disconnected. If the two vertices are additionally connected by a path of length (that is, they are the endpoints of a single edge), the vertices are called adjacent. A graph is said to be connected if every pair of vertices in the graph is connected. This means that there is a path between every pair of vertices. An undirected graph that is not connected is called disconnected. An undirected graph is therefore disconnected if there e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bounded Expansion
In graph theory, a family of graphs is said to have bounded expansion if all of its shallow minors are sparse graphs. Many natural families of sparse graphs have bounded expansion. A closely related but stronger property, polynomial expansion, is equivalent to the existence of separator theorems for these families. Families with these properties have efficient algorithms for problems including the subgraph isomorphism problem and model checking for the first order theory of graphs. Definition and equivalent characterizations A ''t''-shallow minor of a graph ''G'' is defined to be a graph formed from ''G'' by contracting a collection of vertex-disjoint subgraphs of radius ''t'', and deleting the remaining vertices of ''G''. A family of graphs has bounded expansion if there exists a function ''f'' such that, in every ''t''-shallow minor of a graph in the family, the ratio of edges to vertices is at most ''f''(''t'').. Equivalent definitions of classes of bounded expansions are th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Treewidth
In graph theory, the treewidth of an undirected graph is an integer number which specifies, informally, how far the graph is from being a tree. The smallest treewidth is 1; the graphs with treewidth 1 are exactly the trees and the forests A forest is an ecosystem characterized by a dense community of trees. Hundreds of definitions of forest are used throughout the world, incorporating factors such as tree density, tree height, land use, legal standing, and ecological functio .... An example of graphs with treewidth at most 2 are the series–parallel graphs. The maximal graphs with treewidth exactly are called '' -trees'', and the graphs with treewidth at most are called '' partial -trees''. Many other well-studied graph families also have bounded treewidth. Treewidth may be formally defined in several equivalent ways: in terms of the size of the largest vertex set in a tree decomposition of the graph, in terms of the size of the largest clique in a chordal completi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]