Pisot–Vijayaraghavan Number
   HOME
*





Pisot–Vijayaraghavan Number
In mathematics, a Pisot–Vijayaraghavan number, also called simply a Pisot number or a PV number, is a real algebraic integer greater than 1, all of whose Galois conjugates are less than 1 in absolute value. These numbers were discovered by Axel Thue in 1912 and rediscovered by G. H. Hardy in 1919 within the context of diophantine approximation. They became widely known after the publication of Charles Pisot's dissertation in 1938. They also occur in the uniqueness problem for Fourier series. Tirukkannapuram Vijayaraghavan and Raphael Salem continued their study in the 1940s. Salem numbers are a closely related set of numbers. A characteristic property of PV numbers is that their powers approach integers at an exponential rate. Pisot proved a remarkable converse: if ''α'' > 1 is a real number such that the sequence : \, \alpha^n\, measuring the distance from its consecutive powers to the nearest integer is square-summable, or ''ℓ'' 2, then ''α'' is a Pisot n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Accumulation Point
In mathematics, a limit point, accumulation point, or cluster point of a set S in a topological space X is a point x that can be "approximated" by points of S in the sense that every neighbourhood of x with respect to the topology on X also contains a point of S other than x itself. A limit point of a set S does not itself have to be an element of S. There is also a closely related concept for sequences. A cluster point or accumulation point of a sequence (x_n)_ in a topological space X is a point x such that, for every neighbourhood V of x, there are infinitely many natural numbers n such that x_n \in V. This definition of a cluster or accumulation point of a sequence generalizes to nets and filters. The similarly named notion of a (respectively, a limit point of a filter, a limit point of a net) by definition refers to a point that the sequence converges to (respectively, the filter converges to, the net converges to). Importantly, although "limit point of a set" is synon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Derived Set (mathematics)
In mathematics, more specifically in point-set topology, the derived set of a subset S of a topological space is the set of all limit points of S. It is usually denoted by S'. The concept was first introduced by Georg Cantor in 1872 and he developed set theory in large part to study derived sets on the real line. Examples If \mathbb is endowed with its usual Euclidean topology then the derived set of the half-open interval , 1) is the closed interval [0,1 Consider \mathbb with the Topology (structure)">topology (open sets) consisting of the empty set and any subset of \mathbb that contains 1. The derived set of A := \ is A' = \mathbb \setminus \. Properties If A and B are subsets of the topological space \left(X, \mathcal\right), then the derived set has the following properties: * \varnothing' = \varnothing * a \in A' \implies a \in (A \setminus \)' * (A \cup B)' = A' \cup B' * A \subseteq B \implies A' \subseteq B' A subset S of a topological space is closed precise ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plastic Constant
In mathematics, the plastic number (also known as the plastic constant, the plastic ratio, the minimal Pisot number, the platin number, Siegel's number or, in French, ) is a mathematical constant which is the unique real solution of the cubic equation : x^3 = x + 1. It has the exact value : \rho = \sqrt \sqrt Its decimal expansion begins with . Properties Recurrences The powers of the plastic number satisfy the third-order linear recurrence relation for . Hence it is the limiting ratio of successive terms of any (non-zero) integer sequence satisfying this recurrence such as the Padovan sequence (also known as the Cordonnier numbers), the Perrin numbers and the Van der Laan numbers, and bears relationships to these sequences akin to the relationships of the golden ratio to the second-order Fibonacci and Lucas numbers, akin to the relationships between the silver ratio and the Pell numbers. The plastic number satisfies the nested radical recurrence : \rho = \sqrt Numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Carl Ludwig Siegel
Carl Ludwig Siegel (31 December 1896 – 4 April 1981) was a German mathematician specialising in analytic number theory. He is known for, amongst other things, his contributions to the Thue–Siegel–Roth theorem in Diophantine approximation, Siegel's method, Siegel's lemma and the Siegel mass formula for quadratic forms. He was named as one of the most important mathematicians of the 20th century.Pérez, R. A. (2011''A brief but historic article of Siegel'' NAMS 58(4), 558–566. André Weil, without hesitation, named Siegel as the greatest mathematician of the first half of the 20th century. Atle Selberg said of Siegel and his work: Biography Siegel was born in Berlin, where he enrolled at the Humboldt University in Berlin in 1915 as a student in mathematics, astronomy, and physics. Amongst his teachers were Max Planck and Ferdinand Georg Frobenius, whose influence made the young Siegel abandon astronomy and turn towards number theory instead. His best-known student was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minimal Element
In mathematics, especially in order theory, a maximal element of a subset ''S'' of some preordered set is an element of ''S'' that is not smaller than any other element in ''S''. A minimal element of a subset ''S'' of some preordered set is defined dually as an element of ''S'' that is not greater than any other element in ''S''. The notions of maximal and minimal elements are weaker than those of greatest element and least element which are also known, respectively, as maximum and minimum. The maximum of a subset S of a preordered set is an element of S which is greater than or equal to any other element of S, and the minimum of S is again defined dually. In the particular case of a partially ordered set, while there can be at most one maximum and at most one minimum there may be multiple maximal or minimal elements. Specializing further to totally ordered sets, the notions of maximal element and maximum coincide, and the notions of minimal element and minimum coincide. As an exa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Limit Point
In mathematics, a limit point, accumulation point, or cluster point of a set S in a topological space X is a point x that can be "approximated" by points of S in the sense that every neighbourhood of x with respect to the topology on X also contains a point of S other than x itself. A limit point of a set S does not itself have to be an element of S. There is also a closely related concept for sequences. A cluster point or accumulation point of a sequence (x_n)_ in a topological space X is a point x such that, for every neighbourhood V of x, there are infinitely many natural numbers n such that x_n \in V. This definition of a cluster or accumulation point of a sequence generalizes to nets and filters. The similarly named notion of a (respectively, a limit point of a filter, a limit point of a net) by definition refers to a point that the sequence converges to (respectively, the filter converges to, the net converges to). Importantly, although "limit point of a set" is synon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Perron Number
In mathematics, a Perron number is an algebraic integer α which is real and exceeds 1, but such that its conjugate elements are all less than α in absolute value. For example, the larger of the two roots of the irreducible polynomial x^ -3x + 1 is a Perron number. Perron numbers are named after Oskar Perron; the Perron–Frobenius theorem asserts that, for a real square matrix with positive algebraic coefficients whose largest eigenvalue is greater than one, this eigenvalue is a Perron number. As a closely related case, the Perron number of a graph is defined to be the spectral radius of its adjacency matrix. Any Pisot number or Salem number is a Perron number, as is the Mahler measure In mathematics, the Mahler measure M(p) of a polynomial p(z) with complex coefficients is defined as M(p) = , a, \prod_ , \alpha_i, = , a, \prod_^n \max\, where p(z) factorizes over the complex numbers \mathbb as p(z) = a(z-\alpha_1)(z-\alph ... of a monic integer polynomial. References ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Plane
In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the imaginary numbers. The complex plane allows a geometric interpretation of complex numbers. Under addition, they add like vectors. The multiplication of two complex numbers can be expressed more easily in polar coordinates—the magnitude or ''modulus'' of the product is the product of the two absolute values, or moduli, and the angle or ''argument'' of the product is the sum of the two angles, or arguments. In particular, multiplication by a complex number of modulus 1 acts as a rotation. The complex plane is sometimes known as the Argand plane or Gauss plane. Notational conventions Complex numbers In complex analysis, the complex numbers are customarily represented by the symbol ''z'', which can be separated into its real (''x'') and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number a+bi, is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers and are fundamental in many aspects of the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conjugate Element (field Theory)
In mathematics, in particular field theory, the conjugate elements or algebraic conjugates of an algebraic element , over a field extension , are the roots of the minimal polynomial of over . Conjugate elements are commonly called conjugates in contexts where this is not ambiguous. Normally itself is included in the set of conjugates of . Equivalently, the conjugates of are the images of under the field automorphisms of that leave fixed the elements of . The equivalence of the two definitions is one of the starting points of Galois theory. The concept generalizes the complex conjugation, since the algebraic conjugates over \R of a complex number are the number itself and its ''complex conjugate''. Example The cube roots of the number one are: : \sqrt = \begin1 \\ pt-\frac+\fraci \\ pt-\frac-\fraci \end The latter two roots are conjugate elements in with minimal polynomial : \left(x+\frac\right)^2+\frac=x^2+x+1. Properties If ''K'' is given inside an al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Minimal Polynomial (field Theory)
In field theory, a branch of mathematics, the minimal polynomial of an element of a field is, roughly speaking, the polynomial of lowest degree having coefficients in the field, such that is a root of the polynomial. If the minimal polynomial of exists, it is unique. The coefficient of the highest-degree term in the polynomial is required to be 1, and the type for the remaining coefficients could be integers, rational numbers, real numbers, or others. More formally, a minimal polynomial is defined relative to a field extension and an element of the extension field . The minimal polynomial of an element, if it exists, is a member of , the ring of polynomials in the variable with coefficients in . Given an element of , let be the set of all polynomials in such that . The element is called a root or zero of each polynomial in . The set is so named because it is an ideal of . The zero polynomial, all of whose coefficients are 0, is in every since for all and . This ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]