Picard Variety
   HOME
*





Picard Variety
In mathematics, the Picard group of a ringed space ''X'', denoted by Pic(''X''), is the group of isomorphism classes of invertible sheaves (or line bundles) on ''X'', with the group operation being tensor product. This construction is a global version of the construction of the divisor class group, or ideal class group, and is much used in algebraic geometry and the theory of complex manifolds. Alternatively, the Picard group can be defined as the sheaf cohomology group :H^1 (X, \mathcal_X^).\, For integral schemes the Picard group is isomorphic to the class group of Cartier divisors. For complex manifolds the exponential sheaf sequence gives basic information on the Picard group. The name is in honour of Émile Picard's theories, in particular of divisors on algebraic surfaces. Examples * The Picard group of the spectrum of a Dedekind domain is its ''ideal class group''. * The invertible sheaves on projective space P''n''(''k'') for ''k'' a field, are the twisting sh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dedekind Domain
In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily unique up to the order of the factors. There are at least three other characterizations of Dedekind domains that are sometimes taken as the definition: see below. A field is a commutative ring in which there are no nontrivial proper ideals, so that any field is a Dedekind domain, however in a rather vacuous way. Some authors add the requirement that a Dedekind domain not be a field. Many more authors state theorems for Dedekind domains with the implicit proviso that they may require trivial modifications for the case of fields. An immediate consequence of the definition is that every principal ideal domain (PID) is a Dedekind domain. In fact a Dedekind domain is a unique factorization domain (UFD) if and only if it is a PID. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic (algebra)
In mathematics, the characteristic of a ring (mathematics), ring , often denoted , is defined to be the smallest number of times one must use the ring's identity element, multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, is the smallest positive number such that: :\underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent (group theory), exponent of the ring's additive group, that is, the smallest positive integer such that: :\underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). Some authors do not include the multiplicative identity element in their r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Variety
In mathematics, in particular in algebraic geometry, a complete algebraic variety is an algebraic variety , such that for any variety the projection morphism :X \times Y \to Y is a closed map (i.e. maps closed sets onto closed sets). This can be seen as an analogue of compactness in algebraic geometry: a topological space is compact if and only if the above projection map is closed with respect to topological products. The image of a complete variety is closed and is a complete variety. A closed subvariety of a complete variety is complete. A complex variety is complete if and only if it is compact as a complex-analytic variety. The most common example of a complete variety is a projective variety, but there do exist complete non-projective varieties in dimensions 2 and higher. While any complete nonsingular surface is projective, there exist nonsingular complete varieties in dimension 3 and higher which are not projective. The first examples of non-projective complete var ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Non-singular
In the mathematical field of algebraic geometry, a singular point of an algebraic variety is a point that is 'special' (so, singular), in the geometric sense that at this point the tangent space at the variety may not be regularly defined. In case of varieties defined over the reals, this notion generalizes the notion of local non-flatness. A point of an algebraic variety which is not singular is said to be regular. An algebraic variety which has no singular point is said to be non-singular or smooth. Definition A plane curve defined by an implicit equation :F(x,y)=0, where is a smooth function is said to be ''singular'' at a point if the Taylor series of has order at least at this point. The reason for this is that, in differential calculus, the tangent at the point of such a curve is defined by the equation :(x-x_0)F'_x(x_0,y_0) + (y-y_0)F'_y(x_0,y_0)=0, whose left-hand side is the term of degree one of the Taylor expansion. Thus, if this term is zero, the tangent may ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Duality Theory Of Abelian Varieties
In mathematics, a dual abelian variety can be defined from an abelian variety ''A'', defined over a field ''K''. Definition To an abelian variety ''A'' over a field ''k'', one associates a dual abelian variety ''A''v (over the same field), which is the solution to the following moduli problem. A family of degree 0 line bundles parametrized by a ''k''-variety ''T'' is defined to be a line bundle ''L'' on ''A''×''T'' such that # for all t \in T, the restriction of ''L'' to ''A''× is a degree 0 line bundle, # the restriction of ''L'' to ×''T'' is a trivial line bundle (here 0 is the identity of ''A''). Then there is a variety ''A''v and a line bundle P \to A \times A^\vee,, called the Poincaré bundle, which is a family of degree 0 line bundles parametrized by ''A''v in the sense of the above definition. Moreover, this family is universal, that is, to any family ''L'' parametrized by ''T'' is associated a unique morphism ''f'': ''T'' → ''A''v so that ''L'' is isomorphic to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Representable Functor
In mathematics, particularly category theory, a representable functor is a certain functor from an arbitrary category into the category of sets. Such functors give representations of an abstract category in terms of known structures (i.e. sets and functions) allowing one to utilize, as much as possible, knowledge about the category of sets in other settings. From another point of view, representable functors for a category ''C'' are the functors ''given'' with ''C''. Their theory is a vast generalisation of upper sets in posets, and of Cayley's theorem in group theory. Definition Let C be a locally small category and let Set be the category of sets. For each object ''A'' of C let Hom(''A'',–) be the hom functor that maps object ''X'' to the set Hom(''A'',''X''). A functor ''F'' : C → Set is said to be representable if it is naturally isomorphic to Hom(''A'',–) for some object ''A'' of C. A representation of ''F'' is a pair (''A'', Φ) where :Φ : Hom(''A'',&ndash ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dolbeault Cohomology
In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let ''M'' be a complex manifold. Then the Dolbeault cohomology groups H^(M, \Complex) depend on a pair of integers ''p'' and ''q'' and are realized as a subquotient of the space of complex differential forms of degree (''p'',''q''). Construction of the cohomology groups Let Ω''p'',''q'' be the vector bundle of complex differential forms of degree (''p'',''q''). In the article on complex forms, the Dolbeault operator is defined as a differential operator on smooth sections :\bar:\Omega^\to\Omega^ Since :\bar^2=0 this operator has some associated cohomology. Specifically, define the cohomology to be the quotient space :H^(M,\Complex)=\frac . Dolbeault cohomology of vector bundles If ''E'' is a holomorphic vector bundle on a complex manifold ''X'', then one can define likewise a fin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sheaf Cohomology
In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when it can be solved locally. The central work for the study of sheaf cohomology is Grothendieck's 1957 Tôhoku paper. Sheaves, sheaf cohomology, and spectral sequences were introduced by Jean Leray at the prisoner-of-war camp Oflag XVII-A in Austria. From 1940 to 1945, Leray and other prisoners organized a "université en captivité" in the camp. Leray's definitions were simplified and clarified in the 1950s. It became clear that sheaf cohomology was not only a new approach to cohomology in algebraic topology, but also a powerful method in complex analytic geometry and algebraic geometry. These subjects often involve constructing global functions with specified local properties, and sheaf cohomology is ideally suited to such problems. Man ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Exponential Sequence
In mathematics, the exponential sheaf sequence is a fundamental short exact sequence of sheaf (mathematics), sheaves used in complex geometry. Let ''M'' be a complex manifold, and write ''O''''M'' for the sheaf of holomorphic functions on ''M''. Let ''O''''M''* be the subsheaf consisting of the non-vanishing holomorphic functions. These are both sheaves of abelian groups. The exponential function gives a sheaf homomorphism :\exp : \mathcal O_M \to \mathcal O_M^*, because for a holomorphic function ''f'', exp(''f'') is a non-vanishing holomorphic function, and exp(''f'' + ''g'') = exp(''f'')exp(''g''). Its Kernel (algebra), kernel is the sheaf 2π''i''Z of locally constant functions on ''M'' taking the values 2π''in'', with ''n'' an integer. The exponential sheaf sequence is therefore :0\to 2\pi i\,\mathbb Z \to \mathcal O_M\to\mathcal O_M^*\to 0. The exponential mapping here is not always a surjective map on sections; this can be seen for example when ''M'' is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Affine Space
Affine geometry, broadly speaking, is the study of the geometrical properties of lines, planes, and their higher dimensional analogs, in which a notion of "parallel" is retained, but no metrical notions of distance or angle are. Affine spaces differ from linear spaces (that is, vector spaces) in that they do not have a distinguished choice of origin. So, in the words of Marcel Berger, "An affine space is nothing more than a vector space whose origin we try to forget about, by adding translations to the linear maps."* Accordingly, a complex affine space, that is an affine space over the complex numbers, is like a complex vector space, but without a distinguished point to serve as the origin. Affine geometry is one of the two main branches of classical algebraic geometry, the other being projective geometry. A complex affine space can be obtained from a complex projective space by fixing a hyperplane, which can be thought of as a hyperplane of ideal points "at infinity" of the aff ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sheaf (mathematics)
In mathematics, a sheaf is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every piece of data is the sum of its parts). The field of mathematics that studies sheaves is called sheaf theory. Sheaves are understood conceptually as general and abstract objects. Their correct definition is rather technical. They are specifically defined as sheaves of sets or as sheaves of rings, for example, depending on the type of data assigned to the open sets. There are also maps (or morphisms) from one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]