Pfaffian Function
   HOME
*





Pfaffian Function
In mathematics, Pfaffian functions are a certain class of functions whose derivative can be written in terms of the original function. They were originally introduced by Askold Khovanskii in the 1970s, but are named after German mathematician Johann Pfaff. Basic definition Some functions, when differentiated, give a result which can be written in terms of the original function. Perhaps the simplest example is the exponential function, ''f''(''x'') = ''e''''x''. If we differentiate this function we get ''ex'' again, that is :f^\prime(x) = f(x). Another example of a function like this is the reciprocal function, ''g''(''x'') = 1/''x''. If we differentiate this function we will see that :g^\prime(x) = -g(x)^2. Other functions may not have the above property, but their derivative may be written in terms of functions like those above. For example, if we take the function ''h''(''x'') = ''e''''x'' log(''x'') then we see :h^\prime(x) = e^x\log x+x^ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Interval (mathematics)
In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers satisfying is an interval which contains , , and all numbers in between. Other examples of intervals are the set of numbers such that , the set of all real numbers \R, the set of nonnegative real numbers, the set of positive real numbers, the empty set, and any singleton (set of one element). Real intervals play an important role in the theory of integration, because they are the simplest sets whose "length" (or "measure" or "size") is easy to define. The concept of measure can then be extended to more complicated sets of real numbers, leading to the Borel measure and eventually to the Lebesgue measure. Intervals are central to interval arithmetic, a general numerical computing technique that automatically provides guaranteed enclosures for arbitrary formulas, even in the presence of uncertainties, mathematical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the '' Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noetherian Ring
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence I_1\subseteq I_2 \subseteq I_3 \subseteq \cdots of left (or right) ideals has a largest element; that is, there exists an such that: I_=I_=\cdots. Equivalently, a ring is left-Noetherian (resp. right-Noetherian) if every left ideal (resp. right-ideal) is finitely generated. A ring is Noetherian if it is both left- and right-Noetherian. Noetherian rings are fundamental in both commutative and noncommutative ring theory since many rings that are encountered in mathematics are Noetherian (in particular the ring of integers, polynomial rings, and rings of algebraic integers in number fields), and many general theorems on rings rely heavily on Noetherian property (for example, the Las ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ring (mathematics)
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ''ring'' is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. Formally, a ''ring'' is an abelian group whose operation is called ''addition'', with a second binary operation called ''multiplication'' that is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors use the term " " with a missing i to refer to the more general structure that omits this last requirement; see .) Whether a ring is commutative (that is, whether the order in which two elements are multiplied might change the result ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Christiane Rousseau
Christiane Rousseau (born March 30, 1954 in Versailles, France) is a French and Canadian mathematician, a professor in the department of mathematics and statistics at the Université de Montréal. She was president of the Canadian Mathematical Society from 2002 to 2004.Curriculum vitae
retrieved 2014-12-17.


Education and career

Rousseau earned her Ph.D. from the Université de Montréal in 1977, under the supervision of Dana Schlomiuk. After postdoctoral research at , she joined the Montréal faculty in 1979, and was promoted to full professor in 1991.


Recognition

She has received the Adrien-Pouliot Prize and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




O-minimal Structure
In mathematical logic, and more specifically in model theory, an infinite structure (''M'',<,...) which is totally ordered by < is called an o-minimal structure if and only if every definable subset ''X'' ⊂ ''M'' (with parameters taken from ''M'') is a finite union of intervals and points. O-minimality can be regarded as a weak form of quantifier elimination. A structure ''M'' is o-minimal if and only if every formula with one free variable and parameters in ''M'' is equivalent to a quantifier-free formula involving only the ordering, also with parameters in ''M''. This ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wilkie's Theorem
In mathematics, Wilkie's theorem is a result by Alex Wilkie about the theory of ordered fields with an exponential function, or equivalently about the geometric nature of exponential varieties. Formulations In terms of model theory, Wilkie's theorem deals with the language ''L''exp = (+, −, ·, ''m''. Gabrielov's theorem states that any formula in this language is equivalent to an existential one, as above. Hence the theory of the real ordered field with restricted analytic functions is model complete. Intermediate results Gabrielov's theorem applies to the real field with all restricted analytic functions adjoined, whereas Wilkie's theorem removes the need to restrict the function, but only allows one to add the exponential function. As an intermediate result Wilkie asked when the complement of a sub-analytic set could be defined using the same analytic functions that described the original set. It turns out the required functions are the Pfaffian function In mathe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alex Wilkie
Alex James Wilkie FRS (born 1948 in Northampton) is a British mathematician known for his contributions to model theory and logic. Previously Reader in Mathematical Logic at the University of Oxford, he was appointed to the Fielden Chair of Pure Mathematics at the University of Manchester in 2007. Education Alex Wilkie attended Aylesbury Grammar School and went on to gain his BSc in mathematics with first class honours from University College London in 1969, his MSc (in mathematical logic) from the University of London in 1970, and his PhD from the Bedford College, University of London in 1973 under the supervision of Wilfrid Hodges with a dissertation titled ''Models of Number Theory''. Career and research After his PhD he went on to an appointment as a lecturer in mathematics at Leicester University from 1972 to 1973, then a research fellow at the Open University from 1973 until 1978. He spent two periods as a junior lecturer in mathematics at Oxford University (1978–80 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Model Complete
In model theory, a first-order theory is called model complete if every embedding of its models is an elementary embedding. Equivalently, every first-order formula is equivalent to a universal formula. This notion was introduced by Abraham Robinson. Model companion and model completion A companion of a theory ''T'' is a theory ''T''* such that every model of ''T'' can be embedded in a model of ''T''* and vice versa. A model companion of a theory ''T'' is a companion of ''T'' that is model complete. Robinson proved that a theory has at most one model companion. Not every theory is model-companionable, e.g. theory of groups. However if ''T'' is an \aleph_0-categorical theory, then it always has a model companion. A model completion for a theory ''T'' is a model companion ''T''* such that for any model ''M'' of ''T'', the theory of ''T''* together with the diagram of ''M'' is complete. Roughly speaking, this means every model of ''T'' is embeddable in a model of ''T''* in a u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Andrei Gabrielov
Andrei Gabrielov is a mathematician who is a professor at Purdue University. He is a fellow of the American Mathematical Society since 2016, for "contributions to real algebraic and analytic geometry, and the theory of singularities, and for contributions to geophysics." He obtained his Ph.D. from Moscow State University M. V. Lomonosov Moscow State University (MSU; russian: Московский государственный университет имени М. В. Ломоносова) is a public research university in Moscow, Russia and the most prestigious ... in 1973. References External linksPersonal page at PurdueGoogle Scholar Profile
20th-century Russian mathematicians
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordered Field
In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. The basic example of an ordered field is the field of real numbers, and every Dedekind-complete ordered field is isomorphic to the reals. Every subfield of an ordered field is also an ordered field in the inherited order. Every ordered field contains an ordered subfield that is isomorphic to the rational numbers. Squares are necessarily non-negative in an ordered field. This implies that the complex numbers cannot be ordered since the square of the imaginary unit ''i'' is . Finite fields cannot be ordered. Historically, the axiomatization of an ordered field was abstracted gradually from the real numbers, by mathematicians including David Hilbert, Otto Hölder and Hans Hahn. This grew eventually into the Artin–Schreier theory of ordered fields and formally real fields. Definitions There are two equivalent common definitions of an order ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]