Parity P
   HOME
*





Parity P
In computational complexity theory, the complexity class ⊕P (pronounced "parity P") is the class of decision problems solvable by a nondeterministic Turing machine in polynomial time, where the acceptance condition is that the number of accepting computation paths is odd. An example of a ⊕P problem is "does a given graph have an odd number of perfect matchings?" The class was defined by Papadimitriou and Zachos in 1983. ⊕P is a counting class, and can be seen as finding the least significant bit of the answer to the corresponding #P problem. The problem of finding the most significant bit is in PP. PP is believed to be a considerably harder class than ⊕P; for example, there is a relativized universe (see oracle machine) where P = ⊕P ≠ NP = PP = EXPTIME, as shown by Beigel, Buhrman, and Fortnow in 1998. While Toda's theorem shows that PPP contains PH, P⊕P is not known to even contain NP. However, the first part of the proof of Toda's theorem shows that BPP⊕P conta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computational Complexity Theory
In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying their computational complexity, i.e., the amount of resources needed to solve them, such as time and storage. Other measures of complexity are also used, such as the amount of communication (used in communication complexity), the number of gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). One of the roles of computationa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


EXPTIME
In computational complexity theory, the complexity class EXPTIME (sometimes called EXP or DEXPTIME) is the set of all decision problems that are solvable by a deterministic Turing machine in exponential time, i.e., in O(2''p''(''n'')) time, where ''p''(''n'') is a polynomial function of ''n''. EXPTIME is one intuitive class in an exponential hierarchy of complexity classes with increasingly more complex oracles or quantifier alternations. For example, the class 2-EXPTIME is defined similarly to EXPTIME but with a doubly exponential time bound. This can be generalized to higher and higher time bounds. EXPTIME can also be reformulated as the space class APSPACE, the set of all problems that can be solved by an alternating Turing machine in polynomial space. EXPTIME relates to the other basic time and space complexity classes in the following way: P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE. Furthemore, by the time hierarchy theorem and the space hierarchy the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boolean Algebra (logic)
In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variable (mathematics), variables are the truth values ''true'' and ''false'', usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers. Second, Boolean algebra uses Logical connective, logical operators such as Logical conjunction, conjunction (''and'') denoted as ∧, Logical disjunction, disjunction (''or'') denoted as ∨, and the negation (''not'') denoted as ¬. Elementary algebra, on the other hand, uses arithmetic operators such as addition, multiplication, subtraction and division. So Boolean algebra is a formal way of describing logical operations, in the same way that elementary algebra describes numerical operations. Boolean algebra was introduced by George Boole in his first book ''The Mathematical Analysis of Logic'' (1847), and set forth more fully in his ''The Laws of Thought, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


UP (complexity)
In complexity theory, UP (unambiguous non-deterministic polynomial-time) is the complexity class of decision problems solvable in polynomial time on an unambiguous Turing machine with at most one accepting path for each input. UP contains P and is contained in NP. A common reformulation of NP states that a language is in NP if and only if a given answer can be verified by a deterministic machine in polynomial time. Similarly, a language is in UP if a given answer can be verified in polynomial time, and the verifier machine only accepts at most ''one'' answer for each problem instance. More formally, a language ''L'' belongs to UP if there exists a two-input polynomial-time algorithm ''A'' and a constant ''c'' such that :if x in ''L'' , then there exists a unique certificate ''y'' with , y, = O(, x, ^c) such that :if x is not in ''L'', there is no certificate ''y'' with , y, = O(, x, ^c) such that :algorithm ''A'' verifies ''L'' in polynomial time. UP (and its complement co- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Low (complexity)
In computational complexity theory, a language ''B'' (or a complexity class ''B'') is said to be low for a complexity class ''A'' (with some reasonable relativized version of ''A'') if ''A''''B'' = ''A''; that is, ''A'' with an oracle for ''B'' is equal to ''A''. Such a statement implies that an abstract machine which solves problems in ''A'' achieves no additional power if it is given the ability to solve problems in ''B'' at unit cost. In particular, this means that if ''B'' is low for ''A'' then ''B'' is contained in ''A''. Informally, lowness means that problems in ''B'' are not only solvable by machines which can solve problems in ''A'', but are “easy to solve”. An ''A'' machine can simulate many oracle queries to ''B'' without exceeding its resource bounds. Results and relationships that establish one class as low for another are often called lowness results. The set of languages low for a complexity class ''A'' is denoted ''Low(A)''. Classes that are low for themselve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Graph Isomorphism Problem
The graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic. The problem is not known to be solvable in polynomial time nor to be NP-complete, and therefore may be in the computational complexity class NP-intermediate. It is known that the graph isomorphism problem is in the low hierarchy of class NP, which implies that it is not NP-complete unless the polynomial time hierarchy collapses to its second level. At the same time, isomorphism for many special classes of graphs can be solved in polynomial time, and in practice graph isomorphism can often be solved efficiently. This problem is a special case of the subgraph isomorphism problem, which asks whether a given graph ''G'' contains a subgraph that is isomorphic to another given graph ''H''; this problem is known to be NP-complete. It is also known to be a special case of the non-abelian hidden subgroup problem over the symmetric group. In the area of image recognition ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

BPP (complexity)
In computational complexity theory, a branch of computer science, bounded-error probabilistic polynomial time (BPP) is the class of decision problems solvable by a probabilistic Turing machine in polynomial time with an error probability bounded by 1/3 for all instances. BPP is one of the largest ''practical'' classes of problems, meaning most problems of interest in BPP have efficient probabilistic algorithms that can be run quickly on real modern machines. BPP also contains P, the class of problems solvable in polynomial time with a deterministic machine, since a deterministic machine is a special case of a probabilistic machine. Informally, a problem is in BPP if there is an algorithm for it that has the following properties: *It is allowed to flip coins and make random decisions *It is guaranteed to run in polynomial time *On any given run of the algorithm, it has a probability of at most 1/3 of giving the wrong answer, whether the answer is YES or NO. Definition A langu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PH (complexity)
In computational complexity theory, the complexity class PH is the union of all complexity classes in the polynomial hierarchy: :\mathrm = \bigcup_ \Delta_k^\mathrm PH was first defined by Larry Stockmeyer. It is a special case of hierarchy of bounded alternating Turing machine. It is contained in P#P = PPP (by Toda's theorem; the class of problems that are decidable by a polynomial time Turing machine with access to a #P or equivalently PP oracle), and also in PSPACE. PH has a simple logical characterization: it is the set of languages expressible by second-order logic. PH contains almost all well-known complexity classes inside PSPACE; in particular, it contains P, NP, and co-NP. It even contains probabilistic classes such as BPP and RP. However, there is some evidence that BQP, the class of problems solvable in polynomial time by a quantum computer Quantum computing is a type of computation whose operations can harness the phenomena of quantum mechanics, such as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Toda's Theorem
Toda's theorem is a result in computational complexity theory that was proven by Seinosuke Toda in his paper "PP is as Hard as the Polynomial-Time Hierarchy" and was given the 1998 Gödel Prize. Statement The theorem states that the entire polynomial hierarchy PH is contained in PPP; this implies a closely related statement, that PH is contained in P#P. Definitions #P is the problem of exactly counting the number of solutions to a polynomially-verifiable question (that is, to a question in NP), while loosely speaking, PP is the problem of giving an answer that is correct more than half the time. The class P#P consists of all the problems that can be solved in polynomial time if you have access to instantaneous answers to any counting problem in #P (polynomial time relative to a #P oracle). Thus Toda's theorem implies that for any problem in the polynomial hierarchy there is a deterministic polynomial-time Turing reduction to a counting problem. An analogous result in the comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lance Fortnow
Lance Jeremy Fortnow (born August 15, 1963) is a computer scientist known for major results in computational complexity and interactive proof systems. He is currently Dean of the College of Computing at the Illinois Institute of Technology. Biography Lance Fortnow received a doctorate in applied mathematics from MIT in 1989, supervised by Michael Sipser. Since graduation, he has been on the faculty of the University of Chicago (1989–1999, 2003–2007), Northwestern University (2008–2012) and the Georgia Institute of Technology (2012–2019) as chair of the School of Computer Science. Fortnow was the founding editor-in-chief of the journal ''ACM Transactions on Computation Theory'' in 2009. He was the chair of ACM SIGACT and succeeded by Paul Beame. He was the chair of the IEEE Conference on Computational Complexity from 2000 to 2006. In 2002, he began one of the first blogs devoted to theoretical computer science and has written for it since then. Since 2007, he has had a co-b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

NP (complexity)
In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems. NP is the set of decision problems for which the problem instances, where the answer is "yes", have proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine.''Polynomial time'' refers to how quickly the number of operations needed by an algorithm, relative to the size of the problem, grows. It is therefore a measure of efficiency of an algorithm. An equivalent definition of NP is the set of decision problems ''solvable'' in polynomial time by a nondeterministic Turing machine. This definition is the basis for the abbreviation NP; " nondeterministic, polynomial time". These two definitions are equivalent because the algorithm based on the Turing machine consists of two phases, the first of which consists of a guess abou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complexity Class
In computational complexity theory, a complexity class is a set of computational problems of related resource-based complexity. The two most commonly analyzed resources are time and memory. In general, a complexity class is defined in terms of a type of computational problem, a model of computation, and a bounded resource like time or memory. In particular, most complexity classes consist of decision problems that are solvable with a Turing machine, and are differentiated by their time or space (memory) requirements. For instance, the class P is the set of decision problems solvable by a deterministic Turing machine in polynomial time. There are, however, many complexity classes defined in terms of other types of problems (e.g. counting problems and function problems) and using other models of computation (e.g. probabilistic Turing machines, interactive proof systems, Boolean circuits, and quantum computers). The study of the relationships between complexity classes is a ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]