Pandigital
   HOME
*





Pandigital
In mathematics, a pandigital number is an integer that in a given base has among its significant digits each digit used in the base at least once. For example, 1234567890 (one billion two hundred thirty four million five hundred sixty seven thousand eight hundred ninety) is a pandigital number in base 10. The first few pandigital base 10 numbers are given by : : 1023456789, 1023456798, 1023456879, 1023456897, 1023456978, 1023456987, 1023457689 The smallest pandigital number in a given base ''b'' is an integer of the form : b^ + \sum_^ db^ = \frac + (b-1) \times b^ - 1 The following table lists the smallest pandigital numbers of a few selected bases. gives the base 10 values for the first 18 bases. In a trivial sense, all positive integers are pandigital in unary (or tallying). In binary, all integers are pandigital except for 0 and numbers of the form 2^n - 1 (the Mersenne numbers). The larger the base, the rarer pandigital numbers become, though one can always find ru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


9814072356 (number)
In mathematics, a pandigital number is an integer that in a given base has among its significant digits each digit used in the base at least once. For example, 1234567890 (one billion two hundred thirty four million five hundred sixty seven thousand eight hundred ninety) is a pandigital number in base 10. The first few pandigital base 10 numbers are given by : : 1023456789, 1023456798, 1023456879, 1023456897, 1023456978, 1023456987, 1023457689 The smallest pandigital number in a given base ''b'' is an integer of the form : b^ + \sum_^ db^ = \frac + (b-1) \times b^ - 1 The following table lists the smallest pandigital numbers of a few selected bases. gives the base 10 values for the first 18 bases. In a trivial sense, all positive integers are pandigital in unary (or tallying). In binary, all integers are pandigital except for 0 and numbers of the form 2^n - 1 (the Mersenne numbers). The larger the base, the rarer pandigital numbers become, though one can always find ru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hexadecimal
In mathematics and computing, the hexadecimal (also base-16 or simply hex) numeral system is a positional numeral system that represents numbers using a radix (base) of 16. Unlike the decimal system representing numbers using 10 symbols, hexadecimal uses 16 distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9, and "A"–"F" (or alternatively "a"–"f") to represent values from 10 to 15. Software developers and system designers widely use hexadecimal numbers because they provide a human-friendly representation of binary-coded values. Each hexadecimal digit represents four bits (binary digits), also known as a nibble (or nybble). For example, an 8-bit byte can have values ranging from 00000000 to 11111111 in binary form, which can be conveniently represented as 00 to FF in hexadecimal. In mathematics, a subscript is typically used to specify the base. For example, the decimal value would be expressed in hexadecimal as . In programming, a number of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Demlo Number
In recreational mathematics, a repunit is a number like 11, 111, or 1111 that contains only the digit 1 — a more specific type of repdigit. The term stands for repeated unit and was coined in 1966 by Albert H. Beiler in his book ''Recreations in the Theory of Numbers''. A repunit prime is a repunit that is also a prime number. Primes that are repunits in base-2 are Mersenne primes. As of March 2022, the largest known prime number , the largest probable prime ''R''8177207 and the largest elliptic curve primality prime ''R''49081 are all repunits. Definition The base-''b'' repunits are defined as (this ''b'' can be either positive or negative) :R_n^\equiv 1 + b + b^2 + \cdots + b^ = \qquad\mbox, b, \ge2, n\ge1. Thus, the number ''R''''n''(''b'') consists of ''n'' copies of the digit 1 in base-''b'' representation. The first two repunits base-''b'' for ''n'' = 1 and ''n'' = 2 are :R_1^ 1 \qquad \text \qquad R_2^ b+1\qquad\text\ , b, \ge2. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Square (algebra)
In mathematics, a square is the result of multiplication, multiplying a number by itself. The verb "to square" is used to denote this operation. Squaring is the same as exponentiation, raising to the power 2 (number), 2, and is denoted by a superscript 2; for instance, the square of 3 may be written as 32, which is the number 9. In some cases when superscripts are not available, as for instance in programming languages or plain text files, the notations ''x''^2 (caret) or ''x''**2 may be used in place of ''x''2. The adjective which corresponds to squaring is ''wikt:quadratic, quadratic''. The square of an integer may also be called a square number or a perfect square. In algebra, the operation of squaring is often generalized to polynomials, other expression (mathematics), expressions, or values in systems of mathematical values other than the numbers. For instance, the square of the linear function (calculus), linear polynomial is the quadratic polynomial . One of the imp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polydivisible Number
In mathematics a polydivisible number (or magic number) is a natural number, number in a given number base with numerical digit, digits ''abcde...'' that has the following properties: # Its first digit ''a'' is not 0. # The number formed by its first two digits ''ab'' is a multiple of 2. # The number formed by its first three digits ''abc'' is a multiple of 3. # The number formed by its first four digits ''abcd'' is a multiple of 4. # etc. Definition Let n be a positive integer, and let k = \lfloor \log_ \rfloor + 1 be the number of digits in ''n'' written in base ''b''. The number ''n'' is a polydivisible number if for all 1 \leq i \leq k, : \left\lfloor\frac\right\rfloor \equiv 0 \pmod i. ; Example For example, 10801 is a seven-digit polydivisible number in base 4, as : \left\lfloor\frac\right\rfloor = \left\lfloor\frac\right\rfloor = 2 \equiv 0 \pmod 1, : \left\lfloor\frac\right\rfloor = \left\lfloor\frac\right\rfloor = 10 \equiv 0 \pmod 2, : \left\lfloor\frac\right\rfloor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Social Security Number
In the United States, a Social Security number (SSN) is a nine-digit number issued to U.S. citizens, permanent residents, and temporary (working) residents under section 205(c)(2) of the Social Security Act, codified as . The number is issued to an individual by the Social Security Administration, an independent agency of the United States government. Although the original purpose for the number was for the Social Security Administration to track individuals, the Social Security number has become a ''de facto'' national identification number for taxation and other purposes. A Social Security number may be obtained by applying on Form SS-5, Application for a Social Security Number Card. History Social Security numbers were first issued by the Social Security Administration in November 1936 as part of the New Deal Social Security program. Within three months, 25 million numbers were issued. On November 24, 1936, 1,074 of the nation's 45,000 post offices were designated "typing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Friedman Number
A Friedman number is an integer, which represented in a given numeral system, is the result of a non-trivial expression using all its own digits in combination with any of the four basic arithmetic operators (+, −, ×, ÷), additive inverses, parentheses, exponentiation, and concatenation. Here, non-trivial means that at least one operation besides concatenation is used. Leading zeros cannot be used, since that would also result in trivial Friedman numbers, such as 024 = 20 + 4. For example, 347 is a Friedman number in the decimal numeral system, since 347 = 73 + 4. The decimal Friedman numbers are: :25, 121, 125, 126, 127, 128, 153, 216, 289, 343, 347, 625, 688, 736, 1022, 1024, 1206, 1255, 1260, 1285, 1296, 1395, 1435, 1503, 1530, 1792, 1827, 2048, 2187, 2349, 2500, 2501, 2502, 2503, 2504, 2505, 2506, 2507, 2508, 2509, 2592, 2737, 2916, ... . Friedman numbers are named after Erich Friedman, a now-retired mathematics professor at Stetson University, located in DeLand, Florid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square Number
In mathematics, a square number or perfect square is an integer that is the square (algebra), square of an integer; in other words, it is the multiplication, product of some integer with itself. For example, 9 is a square number, since it equals and can be written as . The usual notation for the square of a number is not the product , but the equivalent exponentiation , usually pronounced as " squared". The name ''square'' number comes from the name of the shape. The unit of area is defined as the area of a unit square (). Hence, a square with side length has area . If a square number is represented by ''n'' points, the points can be arranged in rows as a square each side of which has the same number of points as the square root of ''n''; thus, square numbers are a type of figurate numbers (other examples being Cube (algebra), cube numbers and triangular numbers). Square numbers are non-negative. A non-negative integer is a square number when its square root is again an intege ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Palindromic Number
A palindromic number (also known as a numeral palindrome or a numeric palindrome) is a number (such as 16461) that remains the same when its digits are reversed. In other words, it has reflectional symmetry across a vertical axis. The term ''palindromic'' is derived from palindrome, which refers to a word (such as ''rotor'' or ''racecar'') whose spelling is unchanged when its letters are reversed. The first 30 palindromic numbers (in decimal) are: : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, … . Palindromic numbers receive most attention in the realm of recreational mathematics. A typical problem asks for numbers that possess a certain property ''and'' are palindromic. For instance: * The palindromic primes are 2, 3, 5, 7, 11, 101, 131, 151, ... . * The palindromic square numbers are 0, 1, 4, 9, 121, 484, 676, 10201, 12321, ... . It is obvious that in any base there are infinitely many palindr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Divisibility Rule
A divisibility rule is a shorthand and useful way of determining whether a given integer is divisible by a fixed divisor without performing the division, usually by examining its digits. Although there are divisibility tests for numbers in any radix, or base, and they are all different, this article presents rules and examples only for decimal, or base 10, numbers. Martin Gardner explained and popularized these rules in his September 1962 "Mathematical Games" column in ''Scientific American''. Divisibility rules for numbers 1–30 The rules given below transform a given number into a generally smaller number, while preserving divisibility by the divisor of interest. Therefore, unless otherwise noted, the resulting number should be evaluated for divisibility by the same divisor. In some cases the process can be iterated until the divisibility is obvious; for others (such as examining the last ''n'' digits) the result must be examined by other means. For divisors with multiple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]