Pairwise Independent
   HOME
*





Pairwise Independent
In probability theory, a pairwise independent collection of random variables is a set of random variables any two of which are independent. Any collection of mutually independent random variables is pairwise independent, but some pairwise independent collections are not mutually independent. Pairwise independent random variables with finite variance are uncorrelated. A pair of random variables ''X'' and ''Y'' are independent if and only if the random vector (''X'', ''Y'') with joint cumulative distribution function (CDF) F_(x,y) satisfies :F_(x,y) = F_X(x) F_Y(y), or equivalently, their joint density f_(x,y) satisfies :f_(x,y) = f_X(x) f_Y(y). That is, the joint distribution is equal to the product of the marginal distributions. Unless it is not clear in context, in practice the modifier "mutual" is usually dropped so that independence means mutual independence. A statement such as " ''X'', ''Y'', ''Z'' are independent random variables" means that ''X'', ''Y'', ''Z'' are mutua ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms of probability, axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure (mathematics), measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event (probability theory), event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of determinism, non-deterministic or uncertain processes or measured Quantity, quantities that may either be single occurrences or evolve over time in a random fashion). Although it is not possible to perfectly p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Univariate
In mathematics, a univariate object is an expression, equation, function or polynomial involving only one variable. Objects involving more than one variable are multivariate. In some cases the distinction between the univariate and multivariate cases is fundamental; for example, the fundamental theorem of algebra and Euclid's algorithm for polynomials are fundamental properties of univariate polynomials that cannot be generalized to multivariate polynomials. In statistics, a univariate distribution characterizes one variable, although it can be applied in other ways as well. For example, univariate data are composed of a single scalar component. In time series analysis, the whole time series is the "variable": a univariate time series is the series of values over time of a single quantity. Correspondingly, a "multivariate time series" characterizes the changing values over time of several quantities. In some cases, the terminology is ambiguous, since the values within a uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dependent And Independent Variables
Dependent and independent variables are variables in mathematical modeling, statistical modeling and experimental sciences. Dependent variables receive this name because, in an experiment, their values are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical function), on the values of other variables. Independent variables, in turn, are not seen as depending on any other variable in the scope of the experiment in question. In this sense, some common independent variables are time, space, density, mass, fluid flow rate, and previous values of some observed value of interest (e.g. human population size) to predict future values (the dependent variable). Of the two, it is always the dependent variable whose variation is being studied, by altering inputs, also known as regressors in a statistical context. In an experiment, any variable that can be attributed a value without attributing a value to any other variable is called ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sorting
Sorting refers to ordering data in an increasing or decreasing manner according to some linear relationship among the data items. # ordering: arranging items in a sequence ordered by some criterion; # categorizing: grouping items with similar properties. Ordering items is the combination of categorizing them based on equivalent order, and ordering the categories themselves. Sorting information or data In , arranging in an ordered sequence is called "sorting". Sorting is a common operation in many applications, and efficient algorithms to perform it have been developed. The most common uses of sorted sequences are: * making lookup or search efficient; * making merging of sequences efficient. * enable processing of data in a defined order. The opposite of sorting, rearranging a sequence of items in a random or meaningless order, is called shuffling. For sorting, either a weak order, "should not come after", can be specified, or a strict weak order, "should come before" (s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE