Pairing Strategy
   HOME





Pairing Strategy
In a positional game, a pairing strategy is a strategy that a player can use to guarantee victory, or at least force a draw. It is based on dividing the positions on the game-board into disjoint pairs. Whenever the opponent picks a position in a pair, the player picks the other position in the same pair. Example Consider the 5-by-5 variant of Tic-tac-toe. We can create 12 pairwise-disjoint pairs of board positions, denoted by 1,...,12 below: Note that the central element (denoted by *) does not belong to any pair; it is not needed in this strategy. Each horizontal, vertical or diagonal line contains at least one pair. Therefore the following pairing strategy can be used to force a draw: "whenever your opponent chooses an element of pair ''i'', choose the other element of pair ''i''". At the end of the game, you have an element of each winning-line. Therefore, you guarantee that the other player cannot win. Since both players can use this strategy, the game is a draw. This e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Positional Game
A positional game in game theory is a kind of a combinatorial game for two players. It is described by: *Xa finite set of elements. Often ''X'' is called the ''board'' and its elements are called ''positions''. *\mathcala family of subsets of X. These subsets are usually called the ''winning sets''. * A criterion for winning the game. During the game, players alternately claim previously-unclaimed positions, until one of the players wins. If all positions in X are taken while no player wins, the game is considered a draw. The classic example of a positional game is tic-tac-toe. In it, X contains the 9 squares of the game-board, \mathcal contains the 8 lines that determine a victory (3 horizontal, 3 vertical and 2 diagonal), and the winning criterion is: the first player who holds an entire winning-set wins. Other examples of positional games are Hex and the Shannon switching game. For every positional game there are exactly three options: either the first player has a winn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tic-tac-toe
Tic-tac-toe (American English), noughts and crosses (English in the Commonwealth of Nations, Commonwealth English), or Xs and Os (Canadian English, Canadian or Hiberno-English, Irish English) is a paper-and-pencil game for two players who take turns marking the spaces in a three-by-three grid, one with Xs and the other with Os. A player wins when they mark all three spaces of a row, column, or diagonal of the grid, whereupon they traditionally draw a line through those three marks to indicate the win. It is a solved game, with a forced draw assuming Best response, best play from both players. Names In American English, the game is known as "tic-tac-toe". It may also be spelled "tick-tack-toe", "tick-tat-toe", or "tit-tat-toe". In Commonwealth English (particularly British English, British, South African English, South African, Indian English, Indian, Australian English, Australian, and New Zealand English), the game is known as "noughts and crosses", alternatively spelled ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maker-Breaker Game
A Maker-Breaker game is a kind of positional game. Like most positional games, it is described by its set of ''positions/points/elements'' (X) and its family of ''winning-sets'' (\mathcal- a family of subsets of X). It is played by two players, called Maker and Breaker, who alternately take previously untaken elements. In a Maker-Breaker game, Maker wins if he manages to hold all the elements of a winning-set, while Breaker wins if he manages to prevent this, i.e. to hold at least one element in each winning-set. Draws are not possible. In each Maker-Breaker game, either Maker or Breaker has a winning strategy. The main research question about these games is which of these two options holds. Examples A classic Maker-Breaker game is Hex. There, the winning-sets are all paths from the left side of the board to the right side. Maker wins by owning a connected path; Breaker wins by owning a connected path from top to bottom, since it blocks all connected paths from left to right. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Perfect Binary Tree
In computer science, a binary tree is a tree data structure in which each node has at most two children, referred to as the ''left child'' and the ''right child''. That is, it is a ''k''-ary tree with . A recursive definition using set theory is that a binary tree is a triple , where ''L'' and ''R'' are binary trees or the empty set and ''S'' is a singleton (a single–element set) containing the root. From a graph theory perspective, binary trees as defined here are arborescences. A binary tree may thus be also called a bifurcating arborescence, a term which appears in some early programming books before the modern computer science terminology prevailed. It is also possible to interpret a binary tree as an undirected, rather than directed graph, in which case a binary tree is an ordered, rooted tree. Some authors use rooted binary tree instead of ''binary tree'' to emphasize the fact that the tree is rooted, but as defined above, a binary tree is always rooted. In mathema ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Positional Games
Positional notation, also known as place-value notation, positional numeral system, or simply place value, usually denotes the extension to any base of the Hindu–Arabic numeral system (or decimal system). More generally, a positional system is a numeral system in which the contribution of a digit to the value of a number is the value of the digit multiplied by a factor determined by the position of the digit. In early numeral systems, such as Roman numerals, a digit has only one value: I means one, X means ten and C a hundred (however, the values may be modified when combined). In modern positional systems, such as the decimal system, the position of the digit means that its value must be multiplied by some value: in 555, the three identical symbols represent five hundreds, five tens, and five units, respectively, due to their different positions in the digit string. The Babylonian numeral system, base 60, was the first positional system to be developed, and its influence is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]