HOME
*





Positional Game
A positional game is a kind of a combinatorial game for two players. It is described by: *Xa finite set of elements. Often ''X'' is called the ''board'' and its elements are called ''positions''. *\mathcala family of subsets of X. These subsets are usually called the ''winning-sets''. * A criterion for winning the game. During the game, players alternately claim previously-unclaimed positions, until one of the players wins. If all positions in X are taken while no player wins, the game is considered a draw. The classic example of a positional game is Tic-tac-toe. In it, X contains the 9 squares of the game-board, \mathcal contains the 8 lines that determine a victory (3 horizontal, 3 vertical and 2 diagonal), and the winning criterion is: the first player who holds an entire winning-set wins. Other examples of positional games are Hex and the Shannon switching game. For every positional game there are exactly three options: either the first player has a winning strategy, or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Position (poker)
Position in poker refers to the order in which players are seated around the table and the related poker strategy implications. Players who act first are in "early position"; players who act later are in "late position"; players who act in between are in "middle position". A player "has position" on opponents acting before him and is "out of position" to opponents acting after him. Because players act in clockwise order, a player "has position" on opponents seated to his right, except when the opponent has the button and certain cases in the first betting round of games with blinds. Position in Texas hold 'em The primary advantage held by a player in late position is that he will have more information with which to make better decisions than players in early position, who will have to act first, without the benefit of this extra information. This advantage has led to many players in heads-up play raising on the button with an extremely wide range of hands because of this positional ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Banach–Mazur Game
In general topology, set theory and game theory, a Banach– Mazur game is a topological game played by two players, trying to pin down elements in a set (space). The concept of a Banach–Mazur game is closely related to the concept of Baire spaces. This game was the first infinite positional game of perfect information to be studied. It was introduced by Stanisław Mazur as problem 43 in the Scottish book, and Mazur's questions about it were answered by Banach. Definition Let Y be a non-empty topological space, X a fixed subset of Y and \mathcal a family of subsets of Y that have the following properties: * Each member of \mathcal has non-empty interior. * Each non-empty open subset of Y contains a member of \mathcal. Players, P_1 and P_2 alternately choose elements from \mathcal to form a sequence W_0 \supseteq W_1 \supseteq \cdots. P_1 wins if and only if :X \cap \left (\bigcap_ W_n \right ) \neq \emptyset. Otherwise, P_2 wins. This is called a general Banach–Mazur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Topological Game
In mathematics, a topological game is an infinite game of perfect information played between two players on a topological space. Players choose objects with topological properties such as points, open sets, closed sets and open coverings. Time is generally discrete, but the plays may have transfinite lengths, and extensions to continuum time have been put forth. The conditions for a player to win can involve notions like topological closure and convergence. It turns out that some fundamental topological constructions have a natural counterpart in topological games; examples of these are the Baire property, Baire spaces, completeness and convergence properties, separation properties, covering and base properties, continuous images, Suslin sets, and singular spaces. At the same time, some topological properties that arise naturally in topological games can be generalized beyond a game-theoretic context: by virtue of this duality, topological games have been widely used to describ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arithmetic Progression
An arithmetic progression or arithmetic sequence () is a sequence of numbers such that the difference between the consecutive terms is constant. For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a and the common difference of successive members is d, then the n-th term of the sequence (a_n) is given by: :a_n = a + (n - 1)d, If there are ''m'' terms in the AP, then a_m represents the last term which is given by: :a_m = a + (m - 1)d. A finite portion of an arithmetic progression is called a finite arithmetic progression and sometimes just called an arithmetic progression. The sum of a finite arithmetic progression is called an arithmetic series. Sum Computation of the sum 2 + 5 + 8 + 11 + 14. When the sequence is reversed and added to itself term by term, the resulting sequence has a single repeated value in it, equal to the sum of the first and last numbers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arithmetic Progression Game
The arithmetic progression game is a positional game where two players alternately pick numbers, trying to occupy a complete arithmetic progression of a given size. The game is parameterized by two integers ''n'' > ''k''. The game-board is the set . The winning-sets are all the arithmetic progressions of length ''k''. In a Maker-Breaker game variant, the first player (Maker) wins by occupying a ''k''-length arithmetic progression, otherwise the second player (Breaker) wins. The game is also called the van der Waerden game, named after Van der Waerden's theorem. It says that, for any ''k'', there exists some integer ''W''(2,''k'') such that, if the integers are partitioned arbitrarily into two sets, then at least one set contains an arithmetic progression of length ''k''. This means that, if n \geq W(2,k), then Maker has a winning strategy. Unfortunately, this claim is not constructive - it does not show a specific strategy for Maker. Moreover, the current upper bound for ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hamiltonian Path
In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path. Determining whether such paths and cycles exist in graphs (the Hamiltonian path problem and Hamiltonian cycle problem) are NP-complete. Hamiltonian paths and cycles are named after William Rowan Hamilton who invented the icosian game, now also known as ''Hamilton's puzzle'', which involves finding a Hamiltonian cycle in the edge graph of the dodecahedron. Hamilton solved this problem using the icosian calculus, an algebraic structure based on roots of unity with many similarities to the quaternions (also invented by Hami ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hamiltonicity Game
In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path. Determining whether such paths and cycles exist in graphs (the Hamiltonian path problem and Hamiltonian cycle problem) are NP-complete. Hamiltonian paths and cycles are named after William Rowan Hamilton who invented the icosian game, now also known as ''Hamilton's puzzle'', which involves finding a Hamiltonian cycle in the edge graph of the dodecahedron. Hamilton solved this problem using the icosian calculus, an algebraic structure based on roots of unity with many similarities to the quaternions (also invented by H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spanning Tree
In the mathematical field of graph theory, a spanning tree ''T'' of an undirected graph ''G'' is a subgraph that is a tree which includes all of the vertices of ''G''. In general, a graph may have several spanning trees, but a graph that is not connected will not contain a spanning tree (see about spanning forests below). If all of the edges of ''G'' are also edges of a spanning tree ''T'' of ''G'', then ''G'' is a tree and is identical to ''T'' (that is, a tree has a unique spanning tree and it is itself). Applications Several pathfinding algorithms, including Dijkstra's algorithm and the A* search algorithm, internally build a spanning tree as an intermediate step in solving the problem. In order to minimize the cost of power networks, wiring connections, piping, automatic speech recognition, etc., people often use algorithms that gradually build a spanning tree (or many such trees) as intermediate steps in the process of finding the minimum spanning tree. The Internet and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Connectivity Game
Connectivity may refer to: Computing and technology * Connectivity (media), the ability of the social media to accumulate economic capital from the users connections and activities * Internet connectivity, the means by which individual terminals, computers, mobile devices, and local area networks connect to the global Internet * Pixel connectivity, the way in which pixels in 2-dimensional images relate to their neighbors. Mathematics * Connectivity (graph theory), a property of a graph. * The property of being a connected space in topology. * Homotopical connectivity, a property related to the dimensions of holes in a topological space, and to its homotopy groups. * Homological connectivity, a property related to the homology groups of a topological space. Biology Neurobiology * Homotopic connectivity - connectivity between mirror areas of the human brain hemispheres. * Brain connectivity *Functional connectivity *Dynamic functional connectivity Ecology * Landscape connectiv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complete Graph
In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is connected by a pair of unique edges (one in each direction). Graph theory itself is typically dated as beginning with Leonhard Euler's 1736 work on the Seven Bridges of Königsberg. However, drawings of complete graphs, with their vertices placed on the points of a regular polygon, had already appeared in the 13th century, in the work of Ramon Llull. Such a drawing is sometimes referred to as a mystic rose. Properties The complete graph on vertices is denoted by . Some sources claim that the letter in this notation stands for the German word , but the German name for a complete graph, , does not contain the letter , and other sources state that the notation honors the contributions of Kazimierz Kuratowski to graph theory. has edges (a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]