PRO (category Theory)
   HOME





PRO (category Theory)
In category theory, a branch of mathematics, a PROP is a symmetric strict monoidal category whose objects are the natural numbers ''n'' identified with the finite sets \ and whose tensor product is given on objects by the addition on numbers. Because of “symmetric”, for each ''n'', the symmetric group on ''n'' letters is given as a subgroup of the automorphism group of ''n''. The name PROP is an abbreviation of "PROduct and Permutation category". The notion was introduced by Adams and Mac Lane; the topological version of it was later given by Boardman and Vogt. Following them, J. P. May then introduced the term “ operad”, which is a particular kind of PROP, for the object which Boardman and Vogt called the "category of operators in standard form". There are the following inclusions of full subcategories: pg 45 :\mathsf \subset \tfrac\mathsf \subset \mathsf where the first category is the category of (symmetric) operads. Examples and variants An important ''elem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Permutation Matrices
In mathematics, particularly in Matrix (mathematics), matrix theory, a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column with all other entries 0. An permutation matrix can represent a permutation of elements. Pre-matrix multiplication, multiplying an -row matrix by a permutation matrix , forming , results in permuting the rows of , while post-multiplying an -column matrix , forming , permutes the columns of . Every permutation matrix ''P'' is orthogonal matrix, orthogonal, with its invertible matrix, inverse equal to its transpose: P^=P^\mathsf. Indeed, permutation matrices can be Characterization (mathematics), characterized as the orthogonal matrices whose entries are all non-negative. The two permutation/matrix correspondences There are two natural one-to-one correspondences between permutations and permutation matrices, one of which works along the rows of the matrix, the other along its columns. Here is an exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equivalence Of Categories
In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two Category (mathematics), categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation. If a category is equivalent to the dual (category theory), opposite (or dual) of another category then one speaks of a duality of categories, and says that the two categories are dually equivalent. An equivalence of categories consists of a functor betwe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monoid Object
In category theory, a branch of mathematics, a monoid (or monoid object, or internal monoid, or algebra) in a monoidal category is an object ''M'' together with two morphisms * ''μ'': ''M'' ⊗ ''M'' → ''M'' called ''multiplication'', * ''η'': ''I'' → ''M'' called ''unit'', such that the pentagon diagram : and the unitor diagram : commute. In the above notation, 1 is the identity morphism of ''M'', ''I'' is the unit element and ''α'', ''λ'' and ''ρ'' are respectively the associativity, the left identity and the right identity of the monoidal category C. Dually, a comonoid in a monoidal category C is a monoid in the dual category Cop. Suppose that the monoidal category C has a braiding ''γ''. A monoid ''M'' in C is commutative when . Examples * A monoid object in Set, the category of sets (with the monoidal structure induced by the Cartesian product), is a monoid in the usual sense. * A monoid object in Top, the category of topological spaces (with the monoidal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Monoidal Functor
In category theory, monoidal functors are functors between monoidal categories which preserve the monoidal structure. More specifically, a monoidal functor between two monoidal categories consists of a functor between the categories, along with two ''coherence maps''—a natural transformation and a morphism that preserve monoidal multiplication and unit, respectively. Mathematicians require these coherence maps to satisfy additional properties depending on how strictly they want to preserve the monoidal structure; each of these properties gives rise to a slightly different definition of monoidal functors * The coherence maps of lax monoidal functors satisfy no additional properties; they are not necessarily invertible. * The coherence maps of strong monoidal functors are invertible. * The coherence maps of strict monoidal functors are identity maps. Although we distinguish between these different definitions here, authors may call any one of these simply monoidal functors. Defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Order-preserving Function
In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order theory. In calculus and analysis In calculus, a function f defined on a subset of the real numbers with real values is called ''monotonic'' if it is either entirely non-decreasing, or entirely non-increasing. That is, as per Fig. 1, a function that increases monotonically does not exclusively have to increase, it simply must not decrease. A function is termed ''monotonically increasing'' (also ''increasing'' or ''non-decreasing'') if for all x and y such that x \leq y one has f\!\left(x\right) \leq f\!\left(y\right), so f preserves the order (see Figure 1). Likewise, a function is called ''monotonically decreasing'' (also ''decreasing'' or ''non-increasing'') if, whenever x \leq y, then f\!\left(x\right) \geq f\!\left(y\right), so it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simplex Category
In mathematics, the simplex category (or simplicial category or nonempty finite ordinal category) is the category of non-empty finite ordinals and order-preserving maps. It is used to define simplicial and cosimplicial objects. Formal definition The simplex category is usually denoted by \Delta. There are several equivalent descriptions of this category. \Delta can be described as the category of ''non-empty finite ordinals'' as objects, thought of as totally ordered sets, and ''(non-strictly) order-preserving functions'' as morphisms. The objects are commonly denoted = \ (so that is the ordinal n+1 ). The category is generated by coface and codegeneracy maps, which amount to inserting or deleting elements of the orderings. (See simplicial set for relations of these maps.) A simplicial object is a presheaf on \Delta, that is a contravariant functor from \Delta to another category. For instance, simplicial sets are contravariant with the codomain category being the catego ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Braid Group
In mathematics, the braid group on strands (denoted B_n), also known as the Artin braid group, is the group whose elements are equivalence classes of Braid theory, -braids (e.g. under ambient isotopy), and whose group operation is composition of braids (see ). Example applications of braid groups include knot theory, where any knot may be represented as the closure of certain braids (a result known as Alexander's theorem); in mathematical physics where Emil Artin, Artin's canonical presentation of the braid group corresponds to the Yang–Baxter equation (see ); and in monodromy invariants of algebraic geometry. Introduction In this introduction let ; the generalization to other values of will be straightforward. Consider two sets of four items lying on a table, with the items in each set being arranged in a vertical line, and such that one set sits next to the other. (In the illustrations below, these are the black dots.) Using four strands, each item of the first set is connec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Braided Monoidal Category
In mathematics, a ''commutativity constraint'' \gamma on a monoidal category ''\mathcal'' is a choice of isomorphism \gamma_ : A\otimes B \rightarrow B\otimes A for each pair of objects ''A'' and ''B'' which form a "natural family." In particular, to have a commutativity constraint, one must have A \otimes B \cong B \otimes A for all pairs of objects A,B \in \mathcal. A braided monoidal category is a monoidal category \mathcal equipped with a braiding—that is, a commutativity constraint \gamma that satisfies axioms including the hexagon identities defined below. The term ''braided'' references the fact that the braid group plays an important role in the theory of braided monoidal categories. Partly for this reason, braided monoidal categories and other topics are related in the theory of knot invariants. Alternatively, a braided monoidal category can be seen as a tricategory with one 0-cell and one 1-cell. Braided monoidal categories were introduced by André Joyal a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


FinSet
In the mathematical field of category theory, FinSet is the category whose objects are all finite sets and whose morphisms are all functions between them. FinOrd is the category whose objects are all finite ordinal numbers and whose morphisms are all functions between them. Properties FinSet is a full subcategory of Set, the category whose objects are all sets and whose morphisms are all functions. Like Set, FinSet is a large category. FinOrd is a full subcategory of FinSet as by the standard definition, suggested by John von Neumann, each ordinal is the well-ordered set of all smaller ordinals. Unlike Set and FinSet, FinOrd is a small category. FinOrd is a skeleton of FinSet. Therefore, FinSet and FinOrd are equivalent categories. Topoi Like Set, FinSet and FinOrd are topoi. As in Set, in FinSet the categorical product of two objects ''A'' and ''B'' is given by the cartesian product , the categorical sum is given by the disjoint union , and the exponential object ''B''' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Discrete Category
In mathematics, in the field of category theory, a discrete category is a category whose only morphisms are the identity morphisms: :hom''C''(''X'', ''X'') = {id''X''} for all objects ''X'' :hom''C''(''X'', ''Y'') = ∅ for all objects ''X'' ≠ ''Y'' Since by axioms, there is always the identity morphism between the same object, we can express the above as condition on the cardinality of the hom-set :, hom''C''(''X'', ''Y'') , is 1 when ''X'' = ''Y'' and 0 when ''X'' is not equal to ''Y''. Some authors prefer a weaker notion, where a discrete category merely needs to be equivalent to such a category. Simple facts Any class of objects defines a discrete category when augmented with identity maps. Any subcategory of a discrete category is discrete. Also, a category is discrete if and only if all of its subcategories are full. The limit of any functor from a discrete category into another category is called a product, while the colimit is called a coproduct. Thus, for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Base (exponentiation)
In mathematics, exponentiation, denoted , is an operation involving two numbers: the ''base'', , and the ''exponent'' or ''power'', . When is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, is the product of multiplying bases: b^n = \underbrace_.In particular, b^1=b. The exponent is usually shown as a superscript to the right of the base as or in computer code as b^n. This binary operation is often read as " to the power "; it may also be referred to as " raised to the th power", "the th power of ", or, most briefly, " to the ". The above definition of b^n immediately implies several properties, in particular the multiplication rule:There are three common notations for multiplication: x\times y is most commonly used for explicit numbers and at a very elementary level; xy is most common when variables are used; x\cdot y is used for emphasizing that one talks of multiplication or when omitting the multiplication sign would ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]