PG(3,2)
   HOME
*



picture info

PG(3,2)
In finite geometry, PG(3,2) is the smallest three-dimensional projective space. It can be thought of as an extension of the Fano plane. It has 15 points, 35 lines, and 15 planes. It also has the following properties: * Each point is contained in 7 lines and 7 planes * Each line is contained in 3 planes and contains 3 points * Each plane contains 7 points and 7 lines * Each plane is isomorphic to the Fano plane * Every pair of distinct planes intersect in a line * A line and a plane not containing the line intersect in exactly one point Constructions Construction from ''K''6 Take a complete graph ''K''6. It has 15 edges, 15 perfect matchings and 20 triangles. Create a point for each of the 15 edges, and a line for each of the 20 triangles and 15 matchings. The incidence structure between each triangle or matching (line) to its three constituent edges (points), induces a PG(3,2). Construction from Fano planes Take a Fano plane and apply all 5040 permutations of its 7 points. Dis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

PG(3,2)
In finite geometry, PG(3,2) is the smallest three-dimensional projective space. It can be thought of as an extension of the Fano plane. It has 15 points, 35 lines, and 15 planes. It also has the following properties: * Each point is contained in 7 lines and 7 planes * Each line is contained in 3 planes and contains 3 points * Each plane contains 7 points and 7 lines * Each plane is isomorphic to the Fano plane * Every pair of distinct planes intersect in a line * A line and a plane not containing the line intersect in exactly one point Constructions Construction from ''K''6 Take a complete graph ''K''6. It has 15 edges, 15 perfect matchings and 20 triangles. Create a point for each of the 15 edges, and a line for each of the 20 triangles and 15 matchings. The incidence structure between each triangle or matching (line) to its three constituent edges (points), induces a PG(3,2). Construction from Fano planes Take a Fano plane and apply all 5040 permutations of its 7 points. Dis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kirkman's Schoolgirl Problem
Kirkman's schoolgirl problem is a problem in combinatorics proposed by Rev. Thomas Penyngton Kirkman in 1850 as Query VI in ''The Lady's and Gentleman's Diary'' (pg.48). The problem states: Fifteen young ladies in a school walk out three abreast for seven days in succession: it is required to arrange them daily so that no two shall walk twice abreast. Solutions A solution to this problem is an example of a ''Kirkman triple system'', which is a Steiner triple system having a ''parallelism'', that is, a partition of the blocks of the triple system into parallel classes which are themselves partitions of the points into disjoint blocks. Such Steiner systems that have a parallelism are also called ''resolvable''. There are exactly seven non-isomorphic solutions to the schoolgirl problem, as originally listed by Frank Nelson Cole in ''Kirkman Parades'' in 1922. The seven solutions are summarized in the table below, denoting the 15 girls with the letters A to O. From the numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fano Plane
In finite geometry, the Fano plane (after Gino Fano) is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines cannot exist with this pattern of incidences in Euclidean geometry, but they can be given coordinates using the finite field with two elements. The standard notation for this plane, as a member of a family of projective spaces, is . Here stands for "projective geometry", the first parameter is the geometric dimension (it is a plane, of dimension 2) and the second parameter is the order (the number of points per line, minus one). The Fano plane is an example of a finite incidence structure, so many of its properties can be established using combinatorial techniques and other tools used in the study of incidence geometries. Since it is a projective space, algebraic techniques can also be effective tools in its study. Homogeneous coordinat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Space
In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines. This definition of a projective space has the disadvantage of not being isotropic, having two different sorts of points, which must be considered separately in proofs. Therefore, other definitions are generally preferred. There are two classes of definitions. In synthetic geometry, ''point'' and ''line'' are primitive entities that are related by the incidence relation "a point is on a line" or "a line passes through a point", which is subject to the axioms of projective geometry. For some such set of axioms, the projective spaces that are defined have been shown to be equivalent to those resulting from the fol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




GQ(2,2)
''GQ'' (formerly ''Gentlemen's Quarterly'' and ''Apparel Arts'') is an American international monthly men's magazine based in New York City and founded in 1931. The publication focuses on fashion, style, and culture for men, though articles on food, movies, fitness, sex, music, travel, celebrities' sports, technology, and books are also featured. History ''Gentlemen's Quarterly'' was launched in 1931 in the United States as ''Apparel Arts''. It was a men's fashion magazine for the clothing trade, aimed primarily at wholesale buyers and retail sellers. Initially it had a very limited print run and was aimed solely at industry insiders to enable them to give advice to their customers. The popularity of the magazine among retail customers, who often took the magazine from the retailers, spurred the creation of ''Esquire'' magazine in 1933. ''Apparel Arts'' continued until 1957 when it was transformed into a quarterly magazine for men, which was published for many years by Esqu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Geometry
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points (called "points at infinity") to Euclidean points, and vice-versa. Properties meaningful for projective geometry are respected by this new idea of transformation, which is more radical in its effects than can be expressed by a transformation matrix and translations (the affine transformations). The first issue for geometers is what kind of geometry is adequate for a novel situation. It is not possible to refer to angles in projective geometry as it is in Euclidean geometry, because angle is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Oxford University Press
Oxford University Press (OUP) is the university press of the University of Oxford. It is the largest university press in the world, and its printing history dates back to the 1480s. Having been officially granted the legal right to print books by decree in 1586, it is the second oldest university press after Cambridge University Press. It is a department of the University of Oxford and is governed by a group of 15 academics known as the Delegates of the Press, who are appointed by the vice-chancellor of the University of Oxford. The Delegates of the Press are led by the Secretary to the Delegates, who serves as OUP's chief executive and as its major representative on other university bodies. Oxford University Press has had a similar governance structure since the 17th century. The press is located on Walton Street, Oxford, opposite Somerville College, in the inner suburb of Jericho. For the last 500 years, OUP has primarily focused on the publication of pedagogical texts and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plücker Coordinates
In geometry, Plücker coordinates, introduced by Julius Plücker in the 19th century, are a way to assign six homogeneous coordinates to each line in projective 3-space, P3. Because they satisfy a quadratic constraint, they establish a one-to-one correspondence between the 4-dimensional space of lines in P3 and points on a quadric in P5 (projective 5-space). A predecessor and special case of Grassmann coordinates (which describe ''k''-dimensional linear subspaces, or ''flats'', in an ''n''-dimensional Euclidean space), Plücker coordinates arise naturally in geometric algebra. They have proved useful for computer graphics, and also can be extended to coordinates for the screws and wrenches in the theory of kinematics used for robot control. Geometric intuition A line L in 3-dimensional Euclidean space is determined by two distinct points that it contains, or by two distinct planes that contain it. Consider the first case, with points x=(x_1,x_2,x_3) and y=(y_1,y_2,y_3). The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alternating Group
In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of elements is called the alternating group of degree , or the alternating group on letters and denoted by or Basic properties For , the group A''n'' is the commutator subgroup of the symmetric group S''n'' with index 2 and has therefore ''n''!/2 elements. It is the kernel of the signature group homomorphism explained under symmetric group. The group A''n'' is abelian if and only if and simple if and only if or . A5 is the smallest non-abelian simple group, having order 60, and the smallest non-solvable group. The group A4 has the Klein four-group V as a proper normal subgroup, namely the identity and the double transpositions , that is the kernel of the surjection of A4 onto . We have the exact sequence . In Galois theory, this map, or rather the corresponding map , corresponds to associating the Lagrange resolvent cubic to a quartic, which allow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Automorphism Group
In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is the group of invertible linear transformations from ''X'' to itself (the general linear group of ''X''). If instead ''X'' is a group, then its automorphism group \operatorname(X) is the group consisting of all group automorphisms of ''X''. Especially in geometric contexts, an automorphism group is also called a symmetry group. A subgroup of an automorphism group is sometimes called a transformation group. Automorphism groups are studied in a general way in the field of category theory. Examples If ''X'' is a set with no additional structure, then any bijection from ''X'' to itself is an automorphism, and hence the automorphism group of ''X'' in this case is precisely the symmetric group of ''X''. If the set ''X'' has additional struct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Generalized Quadrangle
In geometry, a generalized quadrangle is an incidence structure whose main feature is the lack of any triangles (yet containing many quadrangles). A generalized quadrangle is by definition a polar space of rank two. They are the with ''n'' = 4 and near 2n-gons with ''n'' = 2. They are also precisely the partial geometries pg(''s'',''t'',α) with α = 1. Definition A generalized quadrangle is an incidence structure (''P'',''B'',I), with I ⊆ ''P'' × ''B'' an incidence relation, satisfying certain axioms. Elements of ''P'' are by definition the ''points'' of the generalized quadrangle, elements of ''B'' the ''lines''. The axioms are the following: * There is an ''s'' (''s'' ≥ 1) such that on every line there are exactly ''s'' + 1 points. There is at most one point on two distinct lines. * There is a ''t'' (''t'' ≥ 1) such that through every point there are exactly ''t'' + 1 lines. There is at most one line through two distinct points. * For every point ''p'' not on a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tetrahedral Depiction
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra and the only one that has fewer than 5 faces. The tetrahedron is the three-dimensional case of the more general concept of a Euclidean simplex, and may thus also be called a 3-simplex. The tetrahedron is one kind of pyramid, which is a polyhedron with a flat polygon base and triangular faces connecting the base to a common point. In the case of a tetrahedron the base is a triangle (any of the four faces can be considered the base), so a tetrahedron is also known as a "triangular pyramid". Like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. It has two such nets. For any tetrahedron there exists a sphere (called the circumsphere) on which all four vertices lie, and another sph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]