HOME
*



picture info

Pseudoprotease
Pseudoproteases are catalytically-deficient pseudoenzyme variants of proteases that are represented across the kingdoms of life. Examples See also * Protease * Pseudoenzyme * Catalytic triad A catalytic triad is a set of three coordinated amino acids that can be found in the active site of some enzymes. Catalytic triads are most commonly found in hydrolase and transferase enzymes (e.g. proteases, amidases, esterases, acylases, li ... References {{molecular-biology-stub Molecular biology ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pseudoenzyme
Pseudoenzymes are variants of enzymes (usually proteins) that are catalytically-deficient (usually inactive), meaning that they perform little or no enzyme catalysis. They are believed to be represented in all major enzyme families in the kingdoms of life, where they have important signaling and metabolic functions, many of which are only now coming to light. Pseudoenzymes are becoming increasingly important to analyse, especially as the bioinformatic analysis of genomes reveals their ubiquity. Their important regulatory and sometimes disease-associated functions in metabolic and signalling pathways are also shedding new light on the non-catalytic functions of active enzymes, of moonlighting proteins, the re-purposing of proteins in distinct cellular roles (Protein moonlighting). They are also suggesting new ways to target and interpret cellular signalling mechanisms using small molecules and drugs. The most intensively analyzed, and certainly the best understood pseudoenzymes in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudoenzyme
Pseudoenzymes are variants of enzymes (usually proteins) that are catalytically-deficient (usually inactive), meaning that they perform little or no enzyme catalysis. They are believed to be represented in all major enzyme families in the kingdoms of life, where they have important signaling and metabolic functions, many of which are only now coming to light. Pseudoenzymes are becoming increasingly important to analyse, especially as the bioinformatic analysis of genomes reveals their ubiquity. Their important regulatory and sometimes disease-associated functions in metabolic and signalling pathways are also shedding new light on the non-catalytic functions of active enzymes, of moonlighting proteins, the re-purposing of proteins in distinct cellular roles (Protein moonlighting). They are also suggesting new ways to target and interpret cellular signalling mechanisms using small molecules and drugs. The most intensively analyzed, and certainly the best understood pseudoenzymes in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Catalytic Triad
A catalytic triad is a set of three coordinated amino acids that can be found in the active site of some enzymes. Catalytic triads are most commonly found in hydrolase and transferase enzymes (e.g. proteases, amidases, esterases, acylases, lipases and β-lactamases). An acid- base-nucleophile triad is a common motif for generating a nucleophilic residue for covalent catalysis. The residues form a charge-relay network to polarise and activate the nucleophile, which attacks the substrate, forming a covalent intermediate which is then hydrolysed to release the product and regenerate free enzyme. The nucleophile is most commonly a serine or cysteine amino acid, but occasionally threonine or even selenocysteine. The 3D structure of the enzyme brings together the triad residues in a precise orientation, even though they may be far apart in the sequence (primary structure). As well as divergent evolution of function (and even the triad's nucleophile), catalytic triads show some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Protease
A protease (also called a peptidase, proteinase, or proteolytic enzyme) is an enzyme that catalyzes (increases reaction rate or "speeds up") proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the formation of new protein products. They do this by cleaving the peptide bonds within proteins by hydrolysis, a reaction where water breaks bonds. Proteases are involved in many biological functions, including digestion of ingested proteins, protein catabolism (breakdown of old proteins), and cell signaling. In the absence of functional accelerants, proteolysis would be very slow, taking hundreds of years. Proteases can be found in all forms of life and viruses. They have independently evolved multiple times, and different classes of protease can perform the same reaction by completely different catalytic mechanisms. Hierarchy of proteases Based on catalytic residue Proteases can be classified into seven broad groups: * Serine protease ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Protein Superfamily
A protein superfamily is the largest grouping (clade) of proteins for which common ancestry can be inferred (see homology (biology), homology). Usually this common ancestry is inferred from structural alignment and mechanistic similarity, even if no sequence similarity is evident. Sequence homology can then be deduced even if not apparent (due to low sequence similarity). Superfamilies typically contain several protein families which show sequence similarity within each family. The term ''protein clan'' is commonly used for protease and glycosyl hydrolases superfamilies based on the MEROPS and CAZy classification systems. Identification Superfamilies of proteins are identified using a number of methods. Closely related members can be identified by different methods to those needed to group the most evolutionarily divergent members. Sequence similarity Historically, the similarity of different amino acid sequences has been the most common method of inferring Sequence homology, h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CA Clan
Papain-like proteases (or papain-like (cysteine) peptidases; abbreviated PLP or PLCP) are a large protein family of cysteine protease enzymes that share structural and enzymatic properties with the group's namesake member, papain. They are found in all domains of life. In animals, the group is often known as cysteine cathepsins or, in older literature, lysosomal peptidases. In the MEROPS protease enzyme classification system, papain-like proteases form Clan CA. Papain-like proteases share a common catalytic dyad active site featuring a cysteine amino acid residue that acts as a nucleophile. The human genome encodes eleven cysteine cathepsins which have a broad range of physiological functions. In some parasites papain-like proteases have roles in host invasion, such as cruzipain from ''Trypanosoma cruzi''. In plants, they are involved in host defense and in development. Studies of papain-like proteases from prokaryotes have lagged their eukaryotic counterparts. In cellular organis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Calpamodulin
Calpain-6 (also known as calpamodulin) is a protein in humans that is encoded by the ''CAPN6'' gene. Calpains are a ubiquitous, well-conserved family of calcium-dependent, cysteine proteases. In the MEROPS protease enzyme classification system, they are members of clan CA (papain-like proteases). The calpain proteins are heterodimers consisting of an invariant small subunit and variable large subunits. The large subunit possesses a cysteine protease domain, and both subunits possess calcium-binding domains. Calpains have been implicated in neurodegenerative processes, as their activation can be triggered by calcium influx and oxidative stress. The protein encoded by this gene is highly expressed in the placenta. Its C-terminal region lacks any homology to the calmodulin-like domain of other calpains. The protein lacks a critical catalytic triad residue in its active site (cysteine nucleophile mutated to lysine) and thus is suggested to be proteolytically inactive. The protein may ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




CFLAR
CASP8 and FADD-like apoptosis regulator is a protein that in humans is encoded by the ''CFLAR'' gene. Also called c-FLIP (FLICE Caspase-8 is a caspase protein, encoded by the ''CASP8'' gene. It most likely acts upon caspase-3. ''CASP8'' orthologs have been identified in numerous mammals for which complete genome data are available. These unique orthologs are also present ...-like inhibitory protein). References Further reading * * External links

* * {{gene-2-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neuroligin
Neuroligin (NLGN), a type I membrane protein, is a cell adhesion protein on the postsynaptic membrane that mediates the formation and maintenance of synapses between neurons. Neuroligins act as ligands for β-neurexins, which are cell adhesion proteins located presynaptically. Neuroligin and β-neurexin "shake hands", resulting in the connection between two neurons and the production of a synapse. Neuroligins also affect the properties of neural networks by specifying synaptic functions, and they mediate signalling by recruiting and stabilizing key synaptic components. Neuroligins interact with other postsynaptic proteins to localize neurotransmitter receptors and channels in the postsynaptic density as the cell matures. Additionally, neuroligins are expressed in human peripheral tissues and have been found to play a role in angiogenesis. In humans, alterations in genes encoding neuroligins are implicated in autism and other cognitive disorders. Antibodies in a mother from ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


RHBDF1
Inactive rhomboid protein 1 (iRhom1) also known as rhomboid 5 homolog 1 or rhomboid family member 1 (RHBDF1) is a protein that in humans is encoded by the ''RHBDF1'' gene. The alternative name iRhom1 has been proposed, in order to clarify that it is a catalytically inactive member of the rhomboid family of intramembrane serine proteases Serine proteases (or serine endopeptidases) are enzymes that cleave peptide bonds in proteins. Serine serves as the nucleophilic amino acid at the (enzyme's) active site. They are found ubiquitously in both eukaryotes and prokaryotes. Serin .... References Further reading

* * * * * * {{gene-16-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]