Prolog Syntax And Semantics
The syntax and semantics of Prolog, a programming language, are the sets of rules that define how a Prolog program is written and how it is interpreted, respectively. The rules are laid out in ISO standard ISO/IEC 13211''ISO/IEC 13211: Information technology — Programming languages — Prolog''. International Organization for Standardization, Geneva. although there are differences in the Prolog implementations. Data types Prolog is dynamically typed. It has a single data type, the ''term'', which has several subtypes: ''atoms'', ''numbers'', ''variables'' and ''compound terms''. An atom is a general-purpose name with no inherent meaning. It is composed of a sequence of characters that is parsed by the Prolog reader as a single unit. Atoms are usually bare words in Prolog code, written with no special syntax. However, atoms containing spaces or certain other special characters must be surrounded by single quotes. Atoms beginning with a capital letter must also ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Syntax (programming Languages)
In computer science, the syntax of a computer language is the rules that define the combinations of symbols that are considered to be correctly structured Statement (computer science), statements or Expression (computer science), expressions in that language. This applies both to programming languages, where the document represents source code, and to markup languages, where the document represents data. The syntax of a language defines its surface form. Text-based user interface, Text-based computer languages are based on sequences of Character (computing), characters, while visual programming languages are based on the spatial layout and connections between symbols (which may be textual or graphical). Documents that are syntactically invalid are said to have a syntax error. When designing the syntax of a language, a designer might start by writing down examples of both legal and illegal String (computer science), strings, before trying to figure out the general rules from these ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Unicode
Unicode or ''The Unicode Standard'' or TUS is a character encoding standard maintained by the Unicode Consortium designed to support the use of text in all of the world's writing systems that can be digitized. Version 16.0 defines 154,998 Character (computing), characters and 168 script (Unicode), scripts used in various ordinary, literary, academic, and technical contexts. Unicode has largely supplanted the previous environment of a myriad of incompatible character sets used within different locales and on different computer architectures. The entire repertoire of these sets, plus many additional characters, were merged into the single Unicode set. Unicode is used to encode the vast majority of text on the Internet, including most web pages, and relevant Unicode support has become a common consideration in contemporary software development. Unicode is ultimately capable of encoding more than 1.1 million characters. The Unicode character repertoire is synchronized with Univers ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Cut (logic Programming)
The cut, in Prolog, is a goal, written as !, which always succeeds but cannot be backtracked. Cuts can prevent unwanted backtracking, which could add unwanted solutions and/or space/time overhead to a query. The cut should be used sparingly. While cuts can be inserted into code containing errors, if a test is unnecessary because a cut has guaranteed that it is true, it is good practice to say so in a comment at the appropriate place. Some programmers call the cut a controversial control facilityFoundations of Logic Programming', Springer (2012). because it was added for efficiency reasons only and is not a logical formula. Types Green cut The use of a cut that only improves efficiency is referred to as a green cut. Green cuts are used to make programs more efficient without changing program output. For example: gamble(X) :- gotmoney(X),!. gamble(X) :- gotcredit(X), \+ gotmoney(X). This is called a ' cut operator. The ! tells the interpreter to stop looking for altern ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Tail Recursion
In computer science, a tail call is a subroutine call performed as the final action of a procedure. If the target of a tail is the same subroutine, the subroutine is said to be tail recursive, which is a special case of direct recursion. Tail recursion (or tail-end recursion) is particularly useful, and is often easy to optimize in implementations. Tail calls can be implemented without adding a new stack frame to the call stack. Most of the frame of the current procedure is no longer needed, and can be replaced by the frame of the tail call, modified as appropriate (similar to overlay for processes, but for function calls). The program can then jump to the called subroutine. Producing such code instead of a standard call sequence is called tail-call elimination or tail-call optimization. Tail-call elimination allows procedure calls in tail position to be implemented as efficiently as goto statements, thus allowing efficient structured programming. In the words of Guy L. Steele, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Backtracking
Backtracking is a class of algorithms for finding solutions to some computational problems, notably constraint satisfaction problems, that incrementally builds candidates to the solutions, and abandons a candidate ("backtracks") as soon as it determines that the candidate cannot possibly be completed to a valid solution. The classic textbook example of the use of backtracking is the eight queens puzzle, that asks for all arrangements of eight chess queens on a standard chessboard so that no queen attacks any other. In the common backtracking approach, the partial candidates are arrangements of ''k'' queens in the first ''k'' rows of the board, all in different rows and columns. Any partial solution that contains two mutually attacking queens can be abandoned. Backtracking can be applied only for problems which admit the concept of a "partial candidate solution" and a relatively quick test of whether it can possibly be completed to a valid solution. It is useless, for exampl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Logical Consequence
Logical consequence (also entailment or logical implication) is a fundamental concept in logic which describes the relationship between statement (logic), statements that hold true when one statement logically ''follows from'' one or more statements. A Validity (logic), valid logical argument is one in which the Consequent, conclusion is entailed by the premises, because the conclusion is the consequence of the premises. The philosophical analysis of logical consequence involves the questions: In what sense does a conclusion follow from its premises? and What does it mean for a conclusion to be a consequence of premises?Beall, JC and Restall, Greg, Logical Consequence' The Stanford Encyclopedia of Philosophy (Fall 2009 Edition), Edward N. Zalta (ed.). All of philosophical logic is meant to provide accounts of the nature of logical consequence and the nature of logical truth. Logical consequence is logical truth, necessary and Formalism (philosophy of mathematics), formal, by wa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
SLD Resolution
SLD resolution (''Selective Linear Definite'' clause resolution) is the basic rule of inference, inference rule used in logic programming. It is a refinement of Resolution (logic), resolution, which is both Soundness, sound and refutation Completeness (logic), complete for Horn clauses. The SLD inference rule Given a goal clause, represented as the negation of a problem to be solved: \neg L_1 \lor \cdots \lor \neg L_i \lor \cdots \lor \neg L_n with selected literal \neg L_i , and an input definite clause: L \lor \neg K_1 \lor \cdots \lor \neg K_m whose positive literal (atom) L\, unification (computing), unifies with the atom L_i \, of the selected literal \neg L_i \, , SLD resolution derives another goal clause, in which the selected literal is replaced by the negative literals of the input clause and the unifying substitution \theta \, is applied: (\neg L_1 \lor \cdots \lor \neg K_1 \lor \cdots \lor \neg K_m\ \lor \cdots \lor \neg L_n)\theta In the simple ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Resolution (logic)
In mathematical logic and automated theorem proving, resolution is a rule of inference leading to a refutation-complete theorem-proving technique for sentences in propositional logic and first-order logic. For propositional logic, systematically applying the resolution rule acts as a decision procedure for formula unsatisfiability, solving the (complement of the) Boolean satisfiability problem. For first-order logic, resolution can be used as the basis for a semi-algorithm for the unsatisfiability problem of first-order logic, providing a more practical method than one following from Gödel's completeness theorem. The resolution rule can be traced back to Davis and Putnam (1960); however, their algorithm required trying all ground instances of the given formula. This source of combinatorial explosion was eliminated in 1965 by John Alan Robinson's syntactical unification algorithm, which allowed one to instantiate the formula during the proof "on demand" just as far as needed ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Logical Disjunction
In logic, disjunction (also known as logical disjunction, logical or, logical addition, or inclusive disjunction) is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is sunny or it is warm" can be represented in logic using the disjunctive formula S \lor W , assuming that S abbreviates "it is sunny" and W abbreviates "it is warm". In classical logic, disjunction is given a truth functional semantics according to which a formula \phi \lor \psi is true unless both \phi and \psi are false. Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an ''inclusive'' interpretation of disjunction, in contrast with exclusive disjunction. Classical proof theoretical treatments are often given in terms of rules such as disjunction introduction and disjunction elimination. Disjunction has also been given numerous non-classical treatments, motivated by problems ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Logical Conjunction
In logic, mathematics and linguistics, ''and'' (\wedge) is the Truth function, truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as \wedge or \& or K (prefix) or \times or \cdot in which \wedge is the most modern and widely used. The ''and'' of a set of operands is true if and only if ''all'' of its operands are true, i.e., A \land B is true if and only if A is true and B is true. An operand of a conjunction is a conjunct. Beyond logic, the term "conjunction" also refers to similar concepts in other fields: * In natural language, the denotation of expressions such as English language, English "Conjunction (grammar), and"; * In programming languages, the Short-circuit evaluation, short-circuit and Control flow, control structure; * In set theory, Intersection (set theory), intersection. * In Lattice (order), lattice theory, logical conjunction (Infimum and supremum, greatest lower bound). Notati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Predicate (mathematics)
In logic, a predicate is a symbol that represents a property or a relation. For instance, in the first-order formula P(a), the symbol P is a predicate that applies to the individual constant a. Similarly, in the formula R(a,b), the symbol R is a predicate that applies to the individual constants a and b. According to Gottlob Frege, the meaning of a predicate is exactly a function from the domain of objects to the truth values "true" and "false". In the semantics of logic, predicates are interpreted as relations. For instance, in a standard semantics for first-order logic, the formula R(a,b) would be true on an interpretation if the entities denoted by a and b stand in the relation denoted by R. Since predicates are non-logical symbols, they can denote different relations depending on the interpretation given to them. While first-order logic only includes predicates that apply to individual objects, other logics may allow predicates that apply to collections of objects defined ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |