HOME
*





Product Ring
In mathematics, a product of rings or direct product of rings is a ring that is formed by the Cartesian product of the underlying sets of several rings (possibly an infinity), equipped with componentwise operations. It is a direct product in the category of rings. Since direct products are defined up to an isomorphism, one says colloquially that a ring is the product of some rings if it is isomorphic to the direct product of these rings. For example, the Chinese remainder theorem may be stated as: if and are coprime integers, the quotient ring \Z/mn\Z is the product of \Z/m\Z and \Z/n\Z. Examples An important example is Z/''n''Z, the ring of integers modulo ''n''. If ''n'' is written as a product of prime powers (see Fundamental theorem of arithmetic), :n=p_1^ p_2^\cdots\ p_k^, where the ''pi'' are distinct primes, then Z/''n''Z is naturally isomorphic to the product :\mathbf/p_1^\mathbf \ \times \ \mathbf/p_2^\mathbf \ \times \ \cdots \ \times \ \mathbf/p_k^\mathbf. This f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ring Homomorphism
In ring theory, a branch of abstract algebra, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function such that ''f'' is: :addition preserving: ::f(a+b)=f(a)+f(b) for all ''a'' and ''b'' in ''R'', :multiplication preserving: ::f(ab)=f(a)f(b) for all ''a'' and ''b'' in ''R'', :and unit (multiplicative identity) preserving: ::f(1_R)=1_S. Additive inverses and the additive identity are part of the structure too, but it is not necessary to require explicitly that they too are respected, because these conditions are consequences of the three conditions above. If in addition ''f'' is a bijection, then its inverse ''f''−1 is also a ring homomorphism. In this case, ''f'' is called a ring isomorphism, and the rings ''R'' and ''S'' are called ''isomorphic''. From the standpoint of ring theory, isomorphic rings cannot be distinguished. If ''R'' and ''S'' are rngs, then the cor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Converse (logic)
In logic and mathematics, the converse of a categorical or implicational statement is the result of reversing its two constituent statements. For the implication ''P'' → ''Q'', the converse is ''Q'' → ''P''. For the categorical proposition ''All S are P'', the converse is ''All P are S''. Either way, the truth of the converse is generally independent from that of the original statement.Robert Audi, ed. (1999), ''The Cambridge Dictionary of Philosophy'', 2nd ed., Cambridge University Press: "converse". Implicational converse Let ''S'' be a statement of the form ''P implies Q'' (''P'' → ''Q''). Then the converse of ''S'' is the statement ''Q implies P'' (''Q'' → ''P''). In general, the truth of ''S'' says nothing about the truth of its converse, unless the antecedent ''P'' and the consequent ''Q'' are logically equivalent. For example, consider the true statement "If I am a human, then I am mortal." The converse of that statement is "If I am mortal, then I am ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ideal (ring Theory)
In ring theory, a branch of abstract algebra, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Free Product Of Algebras
In algebra, the free product (coproduct) of a family of associative algebras A_i, i \in I over a commutative ring ''R'' is the associative algebra over ''R'' that is, roughly, defined by the generators and the relations of the A_i's. The free product of two algebras ''A'', ''B'' is denoted by ''A'' ∗ ''B''. The notion is a ring-theoretic analog of a free product of groups. In the category of commutative ''R''-algebras, the free product of two algebras (in that category) is their tensor product. Construction We first define a free product of two algebras. Let ''A'', ''B'' be two algebras over a commutative ring ''R''. Consider their tensor algebra, the direct sum of all possible finite tensor products of ''A'', ''B''; explicitly, T = \bigoplus_^ T_n where :T_0 = R, \, T_1 = A \oplus B, \, T_2 = (A \otimes A) \oplus (A \otimes B) \oplus (B \otimes A) \oplus (B \otimes B), \, T_3 = \cdots, \dots We then set :A * B = T/I where ''I'' is the two-sided ideal generate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Tensor Product Of Algebras
In mathematics, the tensor product of two algebras over a commutative ring ''R'' is also an ''R''-algebra. This gives the tensor product of algebras. When the ring is a field, the most common application of such products is to describe the product of algebra representations. Definition Let ''R'' be a commutative ring and let ''A'' and ''B'' be ''R''-algebras. Since ''A'' and ''B'' may both be regarded as ''R''-modules, their tensor product :A \otimes_R B is also an ''R''-module. The tensor product can be given the structure of a ring by defining the product on elements of the form by :(a_1\otimes b_1)(a_2\otimes b_2) = a_1 a_2\otimes b_1b_2 and then extending by linearity to all of . This ring is an ''R''-algebra, associative and unital with identity element given by . where 1''A'' and 1''B'' are the identity elements of ''A'' and ''B''. If ''A'' and ''B'' are commutative, then the tensor product is commutative as well. The tensor product turns the category of ''R''-algebras ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebra Over A Commutative Ring
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras and non-associative algebras. Given an integer ''n'', the ring of real square matrices of order ''n'' is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dimensional Euclidean space with multiplication given by the vector cross product is an example of a nonassociative algebra over the field of real numbers since the vector cross product is nonassociative, satisfying the Jacobi identity inst ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Commutative Algebra (structure)
In mathematics, an associative algebra ''A'' is an algebraic structure with compatible operations of addition, multiplication (assumed to be associative), and a scalar multiplication by elements in some field ''K''. The addition and multiplication operations together give ''A'' the structure of a ring; the addition and scalar multiplication operations together give ''A'' the structure of a vector space over ''K''. In this article we will also use the term ''K''-algebra to mean an associative algebra over the field ''K''. A standard first example of a ''K''-algebra is a ring of square matrices over a field ''K'', with the usual matrix multiplication. A commutative algebra is an associative algebra that has a commutative multiplication, or, equivalently, an associative algebra that is also a commutative ring. In this article associative algebras are assumed to have a multiplicative identity, denoted 1; they are sometimes called unital associative algebras for clarification. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category (mathematics)
In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. '' Category theory'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to set theory and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trivial Ring
In ring theory, a branch of mathematics, the zero ring or trivial ring is the unique ring (up to isomorphism) consisting of one element. (Less commonly, the term "zero ring" is used to refer to any rng of square zero, i.e., a rng in which for all ''x'' and ''y''. This article refers to the one-element ring.) In the category of rings, the zero ring is the terminal object, whereas the ring of integers Z is the initial object. Definition The zero ring, denoted or simply 0, consists of the one-element set with the operations + and · defined such that 0 + 0 = 0 and 0 · 0 = 0. Properties * The zero ring is the unique ring in which the additive identity 0 and multiplicative identity 1 coincide. (Proof: If in a ring ''R'', then for all ''r'' in ''R'', we have . The proof of the last equality is found here.) * The zero ring is commutative. * The element 0 in the zero ring is a unit, serving as its own multiplicative inverse. * The unit group of the zero ring is the trivial gro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Coproduct
In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduct of a family of objects is essentially the "least specific" object to which each object in the family admits a morphism. It is the category-theoretic dual notion to the categorical product, which means the definition is the same as the product but with all arrows reversed. Despite this seemingly innocuous change in the name and notation, coproducts can be and typically are dramatically different from products. Definition Let C be a category and let X_1 and X_2 be objects of C. An object is called the coproduct of X_1 and X_2, written X_1 \sqcup X_2, or X_1 \oplus X_2, or sometimes simply X_1 + X_2, if there exist morphisms i_1 : X_1 \to X_1 \sqcup X_2 and i_2 : X_2 \to X_1 \sqcup X_2 satisfying the following universal property: for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]