Probability-proportional-to-size Sampling
In survey methodology, probability-proportional-to-size (pps) sampling is a sampling process where each element of the population (of size ''N'') has some ( independent) chance p_i to be selected to the sample when performing one draw. This p_i is proportional to some known quantity x_i so that p_i = \frac. One of the cases this occurs in, as developed by Hanson and Hurwitz in 1943,Hansen, Morris H., and William N. Hurwitz. "On the theory of sampling from finite populations." The Annals of Mathematical Statistics 14.4 (1943): 333-362. is when we have several clusters of units, each with a different (known upfront) number of units, then each cluster can be selected with a probability that is proportional to the number of units inside it.Cochran, W. G. (1977). Sampling Techniques (3rd ed.). Nashville, TN: John Wiley & Sons. So, for example, if we have 3 clusters with 10, 20 and 30 units each, then the chance of selecting the first cluster will be 1/6, the second would be 1/3, and th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pps Sampling
PPS commonly refers to: * Post-postscript, an afterthought, usually in a document. PPS may also refer to: Aviation * Puerto Princesa International Airport, Palawan, Philippines (by IATA code) * Priority Passenger Service, in Singapore Airlines' frequent flyer programme Business and finance * Pay per sale, a payment method used in affiliate marketing * Premium Packaged Spirits or Pre-Packaged Spirits, a term for alcopops * Purchasing power standard, an artificial currency unit * Public Procurement Service, a South Korean government agency Government * Parliamentary Private Secretary, a UK and New Zealand government post * Parliamentary Protective Service, a Canadian law enforcement agency * Partnership for Prosperity and Security in the Caribbean, an agreement between nations in the Caribbean region * Personal Public Service Number, an identifier used in the Republic of Ireland * Planning Policy Statements, under the UK's Planning and Compulsory Purchase Act 2004 * Principa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Probability Proportional To Size Sampling
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur."Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th ed., (2009), .William Feller, ''An Introduction to Probability Theory and Its Applications'', vol. 1, 3rd ed., (1968), Wiley, . This number is often expressed as a percentage (%), ranging from 0% to 100%. A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%). These concepts have been given an axiomatic mathematical formalizati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Survey Methodology
Survey methodology is "the study of survey methods". As a field of applied statistics concentrating on human-research surveys, survey methodology studies the sampling of individual units from a population and associated techniques of survey data collection, such as questionnaire construction and methods for improving the number and accuracy of responses to surveys. Survey methodology targets instruments or procedures that ask one or more questions that may or may not be answered. Researchers carry out statistical surveys with a view towards making statistical inferences about the population being studied; such inferences depend strongly on the survey questions used. Polls about public opinion, public-health surveys, market-research surveys, government surveys and censuses all exemplify quantitative research that uses survey methodology to answer questions about a population. Although censuses do not include a "sample", they do include other aspects of survey methodology, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sampling (statistics)
In this statistics, quality assurance, and survey methodology, sampling is the selection of a subset or a statistical sample (termed sample for short) of individuals from within a population (statistics), statistical population to estimate characteristics of the whole population. The subset is meant to reflect the whole population, and statisticians attempt to collect samples that are representative of the population. Sampling has lower costs and faster data collection compared to recording data from the entire population (in many cases, collecting the whole population is impossible, like getting sizes of all stars in the universe), and thus, it can provide insights in cases where it is infeasible to measure an entire population. Each observation measures one or more properties (such as weight, location, colour or mass) of independent objects or individuals. In survey sampling, weights can be applied to the data to adjust for the sample design, particularly in stratified samplin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Statistical Population
In statistics, a population is a set of similar items or events which is of interest for some question or experiment. A statistical population can be a group of existing objects (e.g. the set of all stars within the Milky Way galaxy) or a hypothetical and potentially infinite group of objects conceived as a generalization from experience (e.g. the set of all possible hands in a game of poker). A population with finitely many values N in the support of the population distribution is a finite population with population size N. A population with infinitely many values in the support is called infinite population. A common aim of statistical analysis is to produce information about some chosen population. In statistical inference, a subset of the population (a statistical '' sample'') is chosen to represent the population in a statistical analysis. Moreover, the statistical sample must be unbiased and accurately model the population. The ratio of the size of this statistical ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Statistical Independence
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes. Two events are independent, statistically independent, or stochastically independent if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds. Similarly, two random variables are independent if the realization of one does not affect the probability distribution of the other. When dealing with collections of more than two events, two notions of independence need to be distinguished. The events are called pairwise independent if any two events in the collection are independent of each other, while mutual independence (or collective independence) of events means, informally speaking, that each event is independent of any combination of other events in the collection. A similar notion exists for collections of random variables. Mutual independence implies pairwise independence ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Poisson Sampling
In survey methodology, Poisson sampling (sometimes denoted as ''PO sampling'') is a sampling process where each element of the population is subjected to an independent Bernoulli trial which determines whether the element becomes part of the sample.Ghosh, Dhiren, and Andrew Vogt. "Sampling methods related to Bernoulli and Poisson Sampling." Proceedings of the Joint Statistical Meetings. American Statistical Association Alexandria, VA, 2002(pdf)/ref> Each element of the population may have a different probability of being included in the sample (\pi_i). The probability of being included in a sample during the drawing of a single sample is denoted as the ''first-order inclusion probability'' of that element (p_i). If all first-order inclusion probabilities are equal, Poisson sampling becomes equivalent to Bernoulli sampling, which can therefore be considered to be a special case of Poisson sampling. A mathematical consequence of Poisson sampling Mathematically, the first-order ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Expected Value
In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first Moment (mathematics), moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean, mean of the possible values a random variable can take, weighted by the probability of those outcomes. Since it is obtained through arithmetic, the expected value sometimes may not even be included in the sample data set; it is not the value you would expect to get in reality. The expected value of a random variable with a finite number of outcomes is a weighted average of all possible outcomes. In the case of a continuum of possible outcomes, the expectation is defined by Integral, integration. In the axiomatic foundation for probability provided by measure theory, the expectation is given by Lebesgue integration. The expected value of a random variable is often denoted by , , or , with a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multinomial Distribution
In probability theory, the multinomial distribution is a generalization of the binomial distribution. For example, it models the probability of counts for each side of a ''k''-sided die rolled ''n'' times. For ''n'' statistical independence, independent trials each of which leads to a success for exactly one of ''k'' categories, with each category having a given fixed success probability, the multinomial distribution gives the probability of any particular combination of numbers of successes for the various categories. When ''k'' is 2 and ''n'' is 1, the multinomial distribution is the Bernoulli distribution. When ''k'' is 2 and ''n'' is bigger than 1, it is the binomial distribution. When ''k'' is bigger than 2 and ''n'' is 1, it is the categorical distribution. The term "multinoulli" is sometimes used for the categorical distribution to emphasize this four-way relationship (so ''n'' determines the suffix, and ''k'' the prefix). The Bernoulli distribution models the outcome of a si ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bernoulli Sampling
In the theory of finite population sampling, Bernoulli sampling is a sampling process where each element of the statistical population, population is subjected to an statistical independence, independent Bernoulli trial which determines whether the element becomes part of the sample. An essential property of Bernoulli sampling is that all elements of the population have equal probability of being included in the sample. Bernoulli sampling is therefore a special case of Poisson sampling. In Poisson sampling each element of the population may have a different probability of being included in the sample. In Bernoulli sampling, the probability is equal for all the elements. Because each element of the population is considered separately for the sample, the sample size is not fixed but rather follows a binomial distribution. Example The most basic Bernoulli method generates ''n'' random variates to extract a sample from a population of ''n'' items. Suppose you want to extract a given ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Poisson Distribution
In probability theory and statistics, the Poisson distribution () is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. It can also be used for the number of events in other types of intervals than time, and in dimension greater than 1 (e.g., number of events in a given area or volume). The Poisson distribution is named after French mathematician Siméon Denis Poisson. It plays an important role for discrete-stable distributions. Under a Poisson distribution with the expectation of ''λ'' events in a given interval, the probability of ''k'' events in the same interval is: :\frac . For instance, consider a call center which receives an average of ''λ ='' 3 calls per minute at all times of day. If the calls are independent, receiving one does not change the probability of when the next on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |