HOME
*





Priority R-tree
The Priority R-tree is a worst-case asymptotically optimal alternative to the spatial tree R-tree. It was first proposed by Arge, De Berg, Haverkort and Yi, K. in an article from 2004. The prioritized R-tree is essentially a hybrid between a k-dimensional tree and a r-tree in that it defines a given object's N-dimensional bounding volume (called Minimum Bounding Rectangles - MBR) as a point in N-dimensions, represented by the ordered pair of the rectangles. The term ''prioritized'' arrives from the introduction of four priority-leaves that represents the most extreme values of each dimensions, included in every branch of the tree. Before answering a window-query by traversing the sub-branches, the prioritized R-tree first checks for overlap in its priority nodes. The sub-branches are traversed (and constructed) by checking whether the least value of the first dimension of the query is above the value of the sub-branches. This gives access to a quick indexation by the value of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Worst-case Complexity
In computer science (specifically computational complexity theory), the worst-case complexity measures the resources (e.g. running time, memory) that an algorithm requires given an input of arbitrary size (commonly denoted as in asymptotic notation). It gives an upper bound on the resources required by the algorithm. In the case of running time, the worst-case time complexity indicates the longest running time performed by an algorithm given ''any'' input of size , and thus guarantees that the algorithm will finish in the indicated period of time. The order of growth (e.g. linear, logarithmic) of the worst-case complexity is commonly used to compare the efficiency of two algorithms. The worst-case complexity of an algorithm should be contrasted with its average-case complexity, which is an average measure of the amount of resources the algorithm uses on a random input. Definition Given a model of computation and an algorithm \mathsf that halts on each input s, the mapping t_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spatial Access Method
A spatial database is a general-purpose database (usually a relational database) that has been enhanced to include spatial data that represents objects defined in a geometric space, along with tools for querying and analyzing such data. Most spatial databases allow the representation of simple geometric objects such as points, lines and polygons. Some spatial databases handle more complex structures such as 3D objects, topological coverages, linear networks, and triangulated irregular networks (TINs). While typical databases have developed to manage various numeric and character types of data, such databases require additional functionality to process spatial data types efficiently, and developers have often added ''geometry'' or ''feature'' data types. The Open Geospatial Consortium (OGC) developed the Simple Features specification (first released in 1997) and sets standards for adding spatial functionality to database systems. The '' SQL/MM Spatial'' ISO/IEC standard is a par ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tree Data Structure
In computer science, a tree is a widely used abstract data type that represents a hierarchical tree structure with a set of connected nodes. Each node in the tree can be connected to many children (depending on the type of tree), but must be connected to exactly one parent, except for the ''root'' node, which has no parent. These constraints mean there are no cycles or "loops" (no node can be its own ancestor), and also that each child can be treated like the root node of its own subtree, making recursion a useful technique for tree traversal. In contrast to linear data structures, many trees cannot be represented by relationships between neighboring nodes in a single straight line. Binary trees are a commonly used type, which constrain the number of children for each parent to exactly two. When the order of the children is specified, this data structure corresponds to an ordered tree in graph theory. A value or pointer to other data may be associated with every node in the tre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


R-tree
R-trees are tree data structures used for spatial access methods, i.e., for indexing multi-dimensional information such as geographical coordinates, rectangles or polygons. The R-tree was proposed by Antonin Guttman in 1984 and has found significant use in both theoretical and applied contexts. A common real-world usage for an R-tree might be to store spatial objects such as restaurant locations or the polygons that typical maps are made of: streets, buildings, outlines of lakes, coastlines, etc. and then find answers quickly to queries such as "Find all museums within 2 km of my current location", "retrieve all road segments within 2 km of my location" (to display them in a navigation system) or "find the nearest gas station" (although not taking roads into account). The R-tree can also accelerate nearest neighbor search for various distance metrics, including great-circle distance. R-tree idea The key idea of the data structure is to group nearby objects and represent the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kd-tree
In computer science, a ''k''-d tree (short for ''k-dimensional tree'') is a space-partitioning data structure for organizing points in a ''k''-dimensional space. ''k''-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches) and creating point clouds. ''k''-d trees are a special case of binary space partitioning trees. Description The ''k''-d tree is a binary tree in which ''every'' node is a ''k''-dimensional point. Every non-leaf node can be thought of as implicitly generating a splitting hyperplane that divides the space into two parts, known as half-spaces. Points to the left of this hyperplane are represented by the left subtree of that node and points to the right of the hyperplane are represented by the right subtree. The hyperplane direction is chosen in the following way: every node in the tree is associated with one of the ''k'' dimensions, with the hyper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bounding Volume Hierarchy
A bounding volume hierarchy (BVH) is a tree structure on a set of geometric objects. All geometric objects, that form the leaf nodes of the tree, are wrapped in bounding volumes. These nodes are then grouped as small sets and enclosed within larger bounding volumes. These, in turn, are also grouped and enclosed within other larger bounding volumes in a recursive fashion, eventually resulting in a tree structure with a single bounding volume at the top of the tree. Bounding volume hierarchies are used to support several operations on sets of geometric objects efficiently, such as in collision detection and ray tracing. Although wrapping objects in bounding volumes and performing collision tests on them before testing the object geometry itself simplifies the tests and can result in significant performance improvements, the same number of pairwise tests between bounding volumes are still being performed. By arranging the bounding volumes into a bounding volume hierarchy, the time ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Point (geometry)
In classical Euclidean geometry, a point is a primitive notion that models an exact location in space, and has no length, width, or thickness. In modern mathematics, a point refers more generally to an element of some set called a space. Being a primitive notion means that a point cannot be defined in terms of previously defined objects. That is, a point is defined only by some properties, called axioms, that it must satisfy; for example, ''"there is exactly one line that passes through two different points"''. Points in Euclidean geometry Points, considered within the framework of Euclidean geometry, are one of the most fundamental objects. Euclid originally defined the point as "that which has no part". In two-dimensional Euclidean space, a point is represented by an ordered pair (, ) of numbers, where the first number conventionally represents the horizontal and is often denoted by , and the second number conventionally represents the vertical and is often denoted by . ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Information Retrieval
Information retrieval (IR) in computing and information science is the process of obtaining information system resources that are relevant to an information need from a collection of those resources. Searches can be based on full-text or other content-based indexing. Information retrieval is the science of searching for information in a document, searching for documents themselves, and also searching for the metadata that describes data, and for databases of texts, images or sounds. Automated information retrieval systems are used to reduce what has been called information overload. An IR system is a software system that provides access to books, journals and other documents; stores and manages those documents. Web search engines are the most visible IR applications. Overview An information retrieval process begins when a user or searcher enters a query into the system. Queries are formal statements of information needs, for example search strings in web search engines. In inf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bounding Volume Hierarchy
A bounding volume hierarchy (BVH) is a tree structure on a set of geometric objects. All geometric objects, that form the leaf nodes of the tree, are wrapped in bounding volumes. These nodes are then grouped as small sets and enclosed within larger bounding volumes. These, in turn, are also grouped and enclosed within other larger bounding volumes in a recursive fashion, eventually resulting in a tree structure with a single bounding volume at the top of the tree. Bounding volume hierarchies are used to support several operations on sets of geometric objects efficiently, such as in collision detection and ray tracing. Although wrapping objects in bounding volumes and performing collision tests on them before testing the object geometry itself simplifies the tests and can result in significant performance improvements, the same number of pairwise tests between bounding volumes are still being performed. By arranging the bounding volumes into a bounding volume hierarchy, the time ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

B-tree
In computer science, a B-tree is a self-balancing tree data structure that maintains sorted data and allows searches, sequential access, insertions, and deletions in logarithmic time. The B-tree generalizes the binary search tree, allowing for nodes with more than two children. Unlike other self-balancing binary search trees, the B-tree is well suited for storage systems that read and write relatively large blocks of data, such as databases and file systems. Origin B-trees were invented by Rudolf Bayer and Edward M. McCreight while working at Boeing Research Labs, for the purpose of efficiently managing index pages for large random-access files. The basic assumption was that indices would be so voluminous that only small chunks of the tree could fit in main memory. Bayer and McCreight's paper, ''Organization and maintenance of large ordered indices'', was first circulated in July 1970 and later published in ''Acta Informatica''. Bayer and McCreight never explained what, if a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]