HOME





Prime Omega Function
In number theory, the prime omega functions \omega(n) and \Omega(n) count the number of prime factors of a natural number n. The number of ''distinct'' prime factors is assigned to \omega(n) (little omega), while \Omega(n) (big omega) counts the ''total'' number of prime factors with multiplicity (see arithmetic function). That is, if we have a prime factorization of n of the form n = p_1^ p_2^ \cdots p_k^ for distinct primes p_i (1 \leq i \leq k), then the prime omega functions are given by \omega(n) = k and \Omega(n) = \alpha_1 + \alpha_2 + \cdots + \alpha_k. These prime-factor-counting functions have many important number theoretic relations. Properties and relations The function \omega(n) is additive and \Omega(n) is completely additive. Little omega has the formula \omega(n)=\sum_ 1, where notation indicates that the sum is taken over all primes that divide , without multiplicity. For example, \omega(12)=\omega(2^2 3)=2. Big omega has the formulas \Omega(n) =\sum_ 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Number Theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory can often be understood through the study of Complex analysis, analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation). Number theory is one of the oldest branches of mathematics alongside geometry. One quirk of number theory is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Partition Function (number Theory)
In number theory, the partition function represents the number of possible partitions of a non-negative integer . For instance, because the integer 4 has the five partitions , , , , and . No closed-form expression for the partition function is known, but it has both asymptotic expansions that accurately approximate it and recurrence relations by which it can be calculated exactly. It grows as an exponential function of the square root of its argument. The multiplicative inverse of its generating function is the Euler function; by Euler's pentagonal number theorem this function is an alternating sum of pentagonal number powers of its argument. Srinivasa Ramanujan first discovered that the partition function has nontrivial patterns in modular arithmetic, now known as Ramanujan's congruences. For instance, whenever the decimal representation of ends in the digit 4 or 9, the number of partitions of will be divisible by 5. Definition and examples For a positive integer , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Additive Function
In number theory, an additive function is an arithmetic function ''f''(''n'') of the positive integer variable ''n'' such that whenever ''a'' and ''b'' are coprime, the function applied to the product ''ab'' is the sum of the values of the function applied to ''a'' and ''b'':Erdös, P., and M. Kac. On the Gaussian Law of Errors in the Theory of Additive Functions. Proc Natl Acad Sci USA. 1939 April; 25(4): 206–207online/ref> f(a b) = f(a) + f(b). Completely additive An additive function ''f''(''n'') is said to be completely additive if f(a b) = f(a) + f(b) holds ''for all'' positive integers ''a'' and ''b'', even when they are not coprime. Totally additive is also used in this sense by analogy with totally multiplicative functions. If ''f'' is a completely additive function then ''f''(1) = 0. Every completely additive function is additive, but not vice versa. Examples Examples of arithmetic functions which are completely additive are: * The restriction of the Logarithm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Riemann Zeta Function
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for and its analytic continuation elsewhere. The Riemann zeta function plays a pivotal role in analytic number theory and has applications in physics, probability theory, and applied statistics. Leonhard Euler first introduced and studied the function over the reals in the first half of the eighteenth century. Bernhard Riemann's 1859 article "On the Number of Primes Less Than a Given Magnitude" extended the Euler definition to a complex variable, proved its meromorphic continuation and functional equation, and established a relation between its zeros and the distribution of prime numbers. This paper also contained the Riemann hypothesis, a conjecture about the distribution of complex zeros of the Riemann zeta function that many mathematicians consider th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Dirichlet Series
In mathematics, a Dirichlet series is any series of the form \sum_^\infty \frac, where ''s'' is complex, and a_n is a complex sequence. It is a special case of general Dirichlet series. Dirichlet series play a variety of important roles in analytic number theory. The most usually seen definition of the Riemann zeta function is a Dirichlet series, as are the Dirichlet L-functions. Specifically, the Riemann zeta function ''ζ(s)'' is the Dirichlet series of the constant unit function ''u(n)'', namely: \zeta(s) = \sum_^\infty \frac = \sum_^\infty \frac = D(u, s), where ''D(u, s)'' denotes the Dirichlet series of ''u(n)''. It is conjectured that the Selberg class of series obeys the generalized Riemann hypothesis. The series is named in honor of Peter Gustav Lejeune Dirichlet. Combinatorial importance Dirichlet series can be used as generating series for counting weighted sets of objects with respect to a weight which is combined multiplicatively when taking Cartesian product ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Iverson Bracket
In mathematics, the Iverson bracket, named after Kenneth E. Iverson, is a notation that generalises the Kronecker delta, which is the Iverson bracket of the statement . It maps any statement to a function of the free variables in that statement. This function is defined to take the value 1 for the values of the variables for which the statement is true, and takes the value 0 otherwise. It is generally denoted by putting the statement inside square brackets: = \begin 1 & \text P \text \\ 0 & \text \end In other words, the Iverson bracket of a statement is the indicator function of the set of values for which the statement is true. The Iverson bracket allows using capital-sigma notation without restriction on the summation index. That is, for any property P(k) of the integer k, one can rewrite the restricted sum \sum_f(k) in the unrestricted form \sum_k f(k) \cdot (k)/math>. With this convention, f(k) does not need to be defined for the values of for which the Iverson bracket eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Mertens Function
In number theory, the Mertens function is defined for all positive integers ''n'' as : M(n) = \sum_^n \mu(k), where \mu(k) is the Möbius function. The function is named in honour of Franz Mertens. This definition can be extended to positive real numbers as follows: : M(x) = M(\lfloor x \rfloor). Less formally, M(x) is the count of square-free integers up to ''x'' that have an even number of prime factors, minus the count of those that have an odd number. The first 143 ''M''(''n'') values are The Mertens function slowly grows in positive and negative directions both on average and in peak value, oscillating in an apparently chaotic manner passing through zero when ''n'' has the values :2, 39, 40, 58, 65, 93, 101, 145, 149, 150, 159, 160, 163, 164, 166, 214, 231, 232, 235, 236, 238, 254, 329, 331, 332, 333, 353, 355, 356, 358, 362, 363, 364, 366, 393, 401, 403, 404, 405, 407, 408, 413, 414, 419, 420, 422, 423, 424, 425, 427, 428, ... . Because the Möbius function only ta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Factorial Moment
In probability theory, the factorial moment is a mathematical quantity defined as the expectation or average of the falling factorial of a random variable. Factorial moments are useful for studying non-negative integer-valued random variables,D. J. Daley and D. Vere-Jones. ''An introduction to the theory of point processes. Vol. I''. Probability and its Applications (New York). Springer, New York, second edition, 2003 and arise in the use of probability-generating functions to derive the moments of discrete random variables. Factorial moments serve as analytic tools in the mathematical field of combinatorics, which is the study of discrete mathematical structures. Definition For a natural number , the -th factorial moment of a probability distribution on the real or complex numbers, or, in other words, a random variable with that probability distribution, is :\operatorname\bigl X)_r\bigr= \operatorname\bigl X(X-1)(X-2)\cdots(X-r+1)\bigr where the is the expectation ( operato ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Moment (mathematics)
In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph. If the function represents mass density, then the zeroth moment is the total mass, the first moment (normalized by total mass) is the center of mass, and the second moment is the moment of inertia. If the function is a probability distribution, then the first moment is the expected value, the second central moment is the variance, the third standardized moment is the skewness, and the fourth standardized moment is the kurtosis. For a distribution of mass or probability on a bounded interval, the collection of all the moments (of all orders, from to ) uniquely determines the distribution ( Hausdorff moment problem). The same is not true on unbounded intervals ( Hamburger moment problem). In the mid-nineteenth century, Pafnuty Chebyshev became the first person to think systematically in terms of the moments of random variables. Significance of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Power Of 2
A power of two is a number of the form where is an integer, that is, the result of exponentiation with number two as the base and integer  as the exponent. In the fast-growing hierarchy, is exactly equal to f_1^n(1). In the Hardy hierarchy, is exactly equal to H_(1). Powers of two with non-negative exponents are integers: , , and is two multiplied by itself times. The first ten powers of 2 for non-negative values of are: : 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ... By comparison, powers of two with negative exponents are fractions: for positive integer , is one half multiplied by itself times. Thus the first few negative powers of 2 are , , , , etc. Sometimes these are called ''inverse powers of two'' because each is the multiplicative inverse of a positive power of two. Base of the binary numeral system Because two is the base of the binary numeral system, powers of two are common in computer science. Written in binary, a power of two always has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Primorial
In mathematics, and more particularly in number theory, primorial, denoted by "", is a function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying positive integers, the function only multiplies prime numbers. The name "primorial", coined by Harvey Dubner, draws an analogy to ''primes'' similar to the way the name "factorial" relates to ''factors''. Definition for prime numbers For the th prime number , the primorial is defined as the product of the first primes: :p_n\# = \prod_^n p_k, where is the th prime number. For instance, signifies the product of the first 5 primes: :p_5\# = 2 \times 3 \times 5 \times 7 \times 11= 2310. The first few primorials are: : 1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690... . Asymptotically, primorials grow according to: :p_n\# = e^, where is Little O notation. Definition for natural numbers In general, for a positive integer , its primorial, , is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorization, factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow primality test, method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]