HOME





Mertens Function
In number theory, the Mertens function is defined for all positive integers ''n'' as : M(n) = \sum_^n \mu(k), where \mu(k) is the Möbius function. The function is named in honour of Franz Mertens. This definition can be extended to positive real numbers as follows: : M(x) = M(\lfloor x \rfloor). Less formally, M(x) is the count of square-free integers up to ''x'' that have an even number of prime factors, minus the count of those that have an odd number. The first 143 ''M''(''n'') values are The Mertens function slowly grows in positive and negative directions both on average and in peak value, oscillating in an apparently chaotic manner passing through zero when ''n'' has the values :2, 39, 40, 58, 65, 93, 101, 145, 149, 150, 159, 160, 163, 164, 166, 214, 231, 232, 235, 236, 238, 254, 329, 331, 332, 333, 353, 355, 356, 358, 362, 363, 364, 366, 393, 401, 403, 404, 405, 407, 408, 413, 414, 419, 420, 422, 423, 424, 425, 427, 428, ... . Because the Möbius function only ta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mertens
__NOTOC__ Mertens () is a surname of Flanders, Flemish origin, meaning "son of Merten" (Martin (name), Martin). It is the fifth most common name in Belgium with 18,518 people in 2008. Geographical distribution As of 2014, 43.4% of all known bearers of the surname ''Mertens'' were residents of Germany (frequency 1:2,728), 34.8% of Belgium (1:487), 8.8% of the United States (1:60,847), 5.9% of the Netherlands (1:4,188), 1.7% of France (1:57,632) and 1.0% of Brazil (1:299,871). In Belgium, the frequency of the surname was higher than national average (1:487) only in one region: Flemish Region (1:367). In Germany, the frequency of the surname was higher than national average (1:2,728) in the following regions: * 1. North Rhine-Westphalia (1:970) * 2. Saxony-Anhalt (1:1,361) In the Netherlands, the frequency of the surname was higher than national average (1:4,188) in the following provinces:. * 1. Limburg (Netherlands), Limburg (1:959) * 2. North Brabant (1:2,002) Noble House of Me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Perron's Formula
In mathematics, and more particularly in analytic number theory, Perron's formula is a formula due to Oskar Perron to calculate the sum of an arithmetic function, by means of an inverse Mellin transform. Statement Let \ be an arithmetic function, and let : g(s)=\sum_^ \frac be the corresponding Dirichlet series. Presume the Dirichlet series to be uniformly convergent for \Re(s)>\sigma. Then Perron's formula is : A(x) = ' a(n) =\frac\int_^ g(z)\frac \,dz. Here, the prime on the summation indicates that the last term of the sum must be multiplied by 1/2 when ''x'' is an integer. The integral is not a convergent Lebesgue integral; it is understood as the Cauchy principal value. The formula requires that ''c'' > 0, ''c'' > σ, and ''x'' > 0. Proof An easy sketch of the proof comes from taking Abel's sum formula : g(s)=\sum_^ \frac=s\int_^ A(x)x^ dx. This is nothing but a Laplace transform under the variable change x = e^t. Inverting it one gets Perron's formula. Examples Be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Asymptotic Estimate
In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function as becomes very large. If , then as becomes very large, the term becomes insignificant compared to . The function is said to be "''asymptotically equivalent'' to , as ". This is often written symbolically as , which is read as " is asymptotic to ". An example of an important asymptotic result is the prime number theorem. Let denote the prime-counting function (which is not directly related to the constant pi), i.e. is the number of prime numbers that are less than or equal to . Then the theorem states that \pi(x)\sim\frac. Asymptotic analysis is commonly used in computer science as part of the analysis of algorithms and is often expressed there in terms of big O notation. Definition Formally, given functions and , we define a binary relation f(x) \sim g(x) \quad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Divisor Summatory Function
In number theory, the divisor summatory function is a function that is a sum over the divisor function. It frequently occurs in the study of the asymptotic behaviour of the Riemann zeta function. The various studies of the behaviour of the divisor function are sometimes called divisor problems. Definition The divisor summatory function is defined as :D(x)=\sum_ d(n) = \sum_ 1 where :d(n)=\sigma_0(n) = \sum_ 1 is the divisor function. The divisor function counts the number of ways that the integer ''n'' can be written as a product of two integers. More generally, one defines :D_k(x)=\sum_ d_k(n)= \sum_\sum_ d_(n) where ''d''''k''(''n'') counts the number of ways that ''n'' can be written as a product of ''k'' numbers. This quantity can be visualized as the count of the number of lattice points fenced off by a hyperbolic surface in ''k'' dimensions. Thus, for ''k'' = 2, ''D''(''x'') = ''D''2(''x'') counts the number of points on a square lattice bounded on the left by the v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Matrix
A logical matrix, binary matrix, relation matrix, Boolean matrix, or (0, 1)-matrix is a matrix with entries from the Boolean domain Such a matrix can be used to represent a binary relation between a pair of finite sets. It is an important tool in combinatorial mathematics and theoretical computer science. Matrix representation of a relation If ''R'' is a binary relation between the finite indexed sets ''X'' and ''Y'' (so ), then ''R'' can be represented by the logical matrix ''M'' whose row and column indices index the elements of ''X'' and ''Y'', respectively, such that the entries of ''M'' are defined by :m_ = \begin 1 & (x_i, y_j) \in R, \\ 0 & (x_i, y_j) \not\in R. \end In order to designate the row and column numbers of the matrix, the sets ''X'' and ''Y'' are indexed with positive integers: ''i'' ranges from 1 to the cardinality (size) of ''X'', and ''j'' ranges from 1 to the cardinality of ''Y''. See the article on indexed sets for more detail. The transpose ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Redheffer Matrix
In mathematics, a Redheffer matrix, often denoted A_n as studied by , is a square (0,1) matrix whose entries ''a''''ij'' are 1 if ''i'' divides ''j'' or if ''j'' = 1; otherwise, ''a''''ij'' = 0. It is useful in some contexts to express Dirichlet convolution, or convolved divisors sums, in terms of matrix products involving the transpose of the n^ Redheffer matrix. Variants and definitions of component matrices Since the invertibility of the Redheffer matrices are complicated by the initial column of ones in the matrix, it is often convenient to express A_n := C_n + D_n where C_n := _/math> is defined to be the (0,1) matrix whose entries are one if and only if j=1 and i \neq 1. The remaining one-valued entries in A_n then correspond to the divisibility condition reflected by the matrix D_n, which plainly can be seen by an application of Mobius inversion is always invertible with inverse D_n^ = \left mu(j/i) M_i(j)\right/math>. We then have a characterization ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Determinant
In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the matrix and the linear map represented, on a given basis (linear algebra), basis, by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible matrix, invertible and the corresponding linear map is an linear isomorphism, isomorphism. However, if the determinant is zero, the matrix is referred to as singular, meaning it does not have an inverse. The determinant is completely determined by the two following properties: the determinant of a product of matrices is the product of their determinants, and the determinant of a triangular matrix is the product of its diagonal entries. The determinant of a matrix is :\begin a & b\\c & d \end=ad-bc, and the determinant of a matrix is : \begin a & b & c \\ d & e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Farey Sequence
In mathematics, the Farey sequence of order ''n'' is the sequence of completely reduced fractions, either between 0 and 1, or without this restriction, which have denominators less than or equal to ''n'', arranged in order of increasing size. With the restricted definition, each Farey sequence starts with the value 0, denoted by the fraction , and ends with the value 1, denoted by the fraction (although some authors omit these terms). A ''Farey sequence'' is sometimes called a Farey series (mathematics), ''series'', which is not strictly correct, because the terms are not summed. Examples The Farey sequences of orders 1 to 8 are : :''F''1 = :''F''2 = :''F''3 = :''F''4 = :''F''5 = :''F''6 = :''F''7 = :''F''8 = Farey sunburst Plotting the numerators versus the denominators of a Farey sequence gives a shape like the one to the right, shown for Reflecting this shape around the diagonal and main axes generates the ''Farey sunburst'', shown below. The Farey sunburst ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Transform
In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input then outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency. The term ''Fourier transform'' refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made, the output of the operation is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches. Functions that are localized in the time domain have Fourier transforms that are spread out across the frequency domain and vice versa, a phenomenon known as the uncertainty principle. The critical case for this principle is the Gaussian function, of substantial importance in probability theory and statist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bernoulli Number
In mathematics, the Bernoulli numbers are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of ''m''-th powers of the first ''n'' positive integers, in the Euler–Maclaurin formula, and in expressions for certain values of the Riemann zeta function. The values of the first 20 Bernoulli numbers are given in the adjacent table. Two conventions are used in the literature, denoted here by B^_n and B^_n; they differ only for , where B^_1=-1/2 and B^_1=+1/2. For every odd , . For every even , is negative if is divisible by 4 and positive otherwise. The Bernoulli numbers are special values of the Bernoulli polynomials B_n(x), with B^_n=B_n(0) and B^+_n=B_n(1). The Bernoulli numbers were discovered around the same time by the Swiss mathematician Jacob Bernoulli, after whom they are named, an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heaviside Step Function
The Heaviside step function, or the unit step function, usually denoted by or (but sometimes , or ), is a step function named after Oliver Heaviside, the value of which is zero for negative arguments and one for positive arguments. Different conventions concerning the value are in use. It is an example of the general class of step functions, all of which can be represented as linear combinations of translations of this one. The function was originally developed in operational calculus for the solution of differential equations, where it represents a signal that switches on at a specified time and stays switched on indefinitely. Heaviside developed the operational calculus as a tool in the analysis of telegraphic communications and represented the function as . Formulation Taking the convention that , the Heaviside function may be defined as: * a piecewise function: H(x) := \begin 1, & x \geq 0 \\ 0, & x * an indicator function: H(x) := \mathbf_=\mathbf 1_(x) For the al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hermann Weyl
Hermann Klaus Hugo Weyl (; ; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist, logician and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, he is associated with the University of Göttingen tradition of mathematics, represented by Carl Friedrich Gauss, David Hilbert and Hermann Minkowski. His research has had major significance for theoretical physics as well as purely mathematical disciplines such as number theory. He was one of the most influential mathematicians of the twentieth century, and an important member of the Institute for Advanced Study during its early years. Weyl contributed to an exceptionally wide range of fields, including works on space, time, matter, philosophy, logic, symmetry and the history of mathematics. He was one of the first to conceive of combining general relativity with the laws of electromagnetism. Freeman Dyson wrote that Weyl alone bore comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]