Preemphasis Improvement
   HOME
*





Preemphasis Improvement
In FM broadcasting, preemphasis improvement is the improvement in the signal-to-noise ratio of the high-frequency portion of the baseband, ''i.e.,'' modulating signal, which improvement results from passing the modulating signal through a preemphasis network before transmission. The reason that preemphasis is needed is that the process of detecting a frequency-modulated signal in a receiver produces a noise spectrum that rises in frequency (a so-called ''triangular'' spectrum). Without preemphasis, the received audio would sound unacceptably noisy at high frequencies, especially under conditions of low carrier-to-noise ratio, i.e., during fringe reception conditions. Preemphasis increases the magnitude of the higher signal frequencies, thereby improving the signal-to-noise ratio. At the output of the discriminator in the FM receiver, a deemphasis network restores the original signal power distribution. ''FM improvement factor'' is the quotient obtained by dividing the signal-to-n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Signal-to-noise Ratio
Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to the noise power, often expressed in decibels. A ratio higher than 1:1 (greater than 0 dB) indicates more signal than noise. SNR, bandwidth, and channel capacity of a communication channel are connected by the Shannon–Hartley theorem. Definition Signal-to-noise ratio is defined as the ratio of the power of a signal (meaningful input) to the power of background noise (meaningless or unwanted input): : \mathrm = \frac, where is average power. Both signal and noise power must be measured at the same or equivalent points in a system, and within the same system bandwidth. Depending on whether the signal is a constant () or a random variable (), the signal-to-noise ratio for random noise becomes: : \mathrm = \frac where E refers to the expected value, i.e. in this case ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Deemphasis
Typically, prior to some process, such as transmission over cable, or recording to phonograph record or tape, the input frequency range most susceptible to noise is boosted. This is referred to as "pre-emphasis"before the process the signal will undergo. Later, when the signal is received, or retrieved from recording, the reverse transformation is applied ("de-emphasis") so that the output accurately reproduces the original input. Any noise added by transmission or record/playback, to the frequency range previously boosted, is now attenuated in the de-emphasis stage. The high-frequency signal components are emphasized to produce a more equal modulation index for the transmitted frequency spectrum, and therefore a better signal-to-noise ratio for the entire frequency range. Emphasis is commonly used in FM broadcasting (preemphasis improvement) and vinyl (e.g. LP) records. In waveform signals In processing electronic audio signals, pre-emphasis refers to a system process design ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thermal Noise
A thermal column (or thermal) is a rising mass of buoyant air, a convective current in the atmosphere, that transfers heat energy vertically. Thermals are created by the uneven heating of Earth's surface from solar radiation, and are an example of convection, specifically atmospheric convection. Thermals on Earth The Sun warms the ground, which in turn warms the air directly above. The warm air near the surface expands, becoming less dense than the surrounding air. The lighter air rises and cools due to its expansion in the lower pressure at higher altitudes. It stops rising when it has cooled to the same temperature, thus density, as the surrounding air. Associated with a thermal is a downward flow surrounding the thermal column. The downward-moving exterior is caused by colder air being displaced at the top of the thermal. The size and strength of thermals are influenced by the properties of the lower atmosphere (the ''troposphere''). When the air is cold, bubbles of warm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Signalling (telecommunication)
In telecommunication, signaling is the use of signals for controlling communications. This may constitute an information exchange concerning the establishment and control of a telecommunication circuit and the management of the network. Classification Signaling systems may be classified based on several principal characteristics. In-band and out-of-band signaling In the public switched telephone network (PSTN), in-band signaling is the exchange of call control information within the same physical channel, or within the same frequency band, that the telephone call itself is using. An example is dual-tone multi-frequency signaling (DTMF), which is used on most telephone lines to customer premises. Out-of-band signaling is telecommunication signaling on a dedicated channel separate from that used for the telephone call. Out-of-band signaling has been used since Signaling System No. 6 (SS6) was introduced in the 1970s, and also in Signalling System No. 7 (SS7) in 1980 which became ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Frequency Modulation
Frequency modulation (FM) is the encoding of information in a carrier wave by varying the instantaneous frequency of the wave. The technology is used in telecommunications, radio broadcasting, signal processing, and Run-length limited#FM: .280.2C1.29 RLL, computing. In Analog signal, analog frequency modulation, such as radio broadcasting, of an audio signal representing voice or music, the instantaneous frequency deviation, i.e. the difference between the frequency of the carrier and its center frequency, has a functional relation to the modulating signal amplitude. Digital data can be encoded and transmitted with a type of frequency modulation known as frequency-shift keying (FSK), in which the instantaneous frequency of the carrier is shifted among a set of frequencies. The frequencies may represent digits, such as '0' and '1'. FSK is widely used in computer modems, such as fax modems, telephone caller ID systems, garage door openers, and other low-frequency transmissions. R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transmission (telecommunications)
In telecommunications, transmission is the process of sending or propagating an analog or digital signal via a medium that is wired, wireless, or fiber-optic. Transmission technologies typically refer to physical layer protocol duties such as modulation, demodulation, line coding, equalization, error control, bit synchronization and multiplexing, but it may also involve higher-layer protocol duties, for example, digitizing an analog signal, and data compression. Transmission of a digital message, or of a digitized analog signal, is known as data transmission. Examples of transmission are the sending of signals with limited duration, for example, a block or packet of data, a phone call, or an email. See also *Radio transmitter In electronics and telecommunications, a radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna. The transmitter itself generates a radio frequency alternating current, which is applied to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bandwidth (signal Processing)
Bandwidth is the difference between the upper and lower frequencies in a continuous band of frequencies. It is typically measured in hertz, and depending on context, may specifically refer to ''passband bandwidth'' or ''baseband bandwidth''. Passband bandwidth is the difference between the upper and lower cutoff frequencies of, for example, a band-pass filter, a communication channel, or a signal spectrum. Baseband bandwidth applies to a low-pass filter or baseband signal; the bandwidth is equal to its upper cutoff frequency. Bandwidth in hertz is a central concept in many fields, including electronics, information theory, digital communications, radio communications, signal processing, and spectroscopy and is one of the determinants of the capacity of a given communication channel. A key characteristic of bandwidth is that any band of a given width can carry the same amount of information, regardless of where that band is located in the frequency spectrum. For example, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Power (physics)
In physics, power is the amount of energy transferred or converted per unit time. In the International System of Units, the unit of power is the watt, equal to one joule per second. In older works, power is sometimes called ''activity''. Power is a scalar quantity. Power is related to other quantities; for example, the power involved in moving a ground vehicle is the product of the aerodynamic drag plus traction force on the wheels, and the velocity of the vehicle. The output power of a motor is the product of the torque that the motor generates and the angular velocity of its output shaft. Likewise, the power dissipated in an electrical element of a circuit is the product of the current flowing through the element and of the voltage across the element. Definition Power is the rate with respect to time at which work is done; it is the time derivative of work: P =\frac where is power, is work, and is time. If a constant force F is applied throughout a distance x, the wor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Discriminator
In distributed computing, a discriminator is a typed tag field present in OMG IDL discriminated union type and value definitions that determines which union member is selected in the current union instance. Unlike in some conventional programming languages offering support for unions, discriminator in IDL is not identical to selected field name. Here is an example of IDL union type definition: union Register switch (char) ; Effective value of the ''Register'' type may contain AX as selected field, but discriminator value may be either 'a' or 'b' and it is stored in memory separately. Therefore, IDL logically separates information about currently selected field name and union effective value from information about current discriminator value. In the example above, discriminator value may be anything of the following: 'a', 'b', 'c', as well as all other characters belonging to the IDL char type, since the default branch specified in the example ''Register'' type allows use of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Frequency
Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is equal to one event per second. The period is the interval of time between events, so the period is the reciprocal of the frequency. For example, if a heart beats at a frequency of 120 times a minute (2 hertz), the period, —the interval at which the beats repeat—is half a second (60 seconds divided by 120 beats). Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals (sound), radio waves, and light. Definitions and units For cyclical phenomena such as oscillations, waves, or for examples of simple harmonic motion, the term ''frequency'' is defined as the number of cycles or vibrations per unit of time. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fringe Reception
A broadcast range (also listening range or listening area for radio, or viewing range or viewing area for television) is the service area that a broadcast station or other transmission covers via radio waves (or possibly infrared light, which is closely related). It is generally the area in which a station's signal strength is sufficient for most receivers to decode it. However, this also depends on interference from other stations. Legal definitions The "primary service area" is the area served by a station's strongest signal. The "city-grade contour" is 70 dBμ (decibels relative to one microvolt per meter of signal strength) or 3.16mV/m (millivolts per meter) for FM stations in the United States, according to Federal Communications Commission (FCC) regulations. This is also significant in broadcast law, in that a station must cover its city of license within this area, except for non-commercial educational and low-power stations. The legally protected range of a station ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Carrier-to-noise Ratio
In telecommunications, the carrier-to-noise ratio, often written CNR or ''C/N'', is the signal-to-noise ratio (SNR) of a modulated signal. The term is used to distinguish the CNR of the radio frequency passband signal from the SNR of an analog base band message signal after demodulation. For example, with FM radio, the strength of the 100 MHz carrier with modulations would be considered for CNR, whereas the audio frequency analogue message signal would be for SNR; in each case, compared to the apparent noise. If this distinction is not necessary, the term SNR is often used instead of CNR, with the same definition. Digitally modulated signals (e.g. QAM or PSK) are basically made of two CW carriers (the I and Q components, which are out-of-phase carriers). In fact, the information (bits or symbols) is carried by given combinations of phase and/or amplitude of the I and Q components. It is for this reason that, in the context of digital modulations, digitally modulated signals ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]