HOME
*





Prandtl–Batchelor Theorem
In fluid dynamics, Prandtl–Batchelor theorem states that ''if in a two-dimensional laminar flow at high Reynolds number closed streamlines occur, then the vorticity in the closed streamline region must be a constant''. A similar statement holds true for axisymmetric flows. The theorem is named after Ludwig Prandtl and George Batchelor. Prandtl in his celebrated 1904 paper stated this theorem in arguments, George Batchelor unaware of this work proved the theorem in 1956. The problem was also studied in the same year by Richard Feynman and Paco Lagerstrom and by W.W. Wood in 1957. Mathematical proof At high Reynolds numbers, Euler equations reduce to solving a problem for stream function The stream function is defined for incompressible flow, incompressible (divergence-free) fluid flow, flows in two dimensions – as well as in three dimensions with axisymmetry. The flow velocity components can be expressed as the derivatives of t ..., :\nabla^2\psi = - \omega(\psi), \quad \psi=\p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fluid Dynamics
In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) and hydrodynamics (the study of liquids in motion). Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation. Fluid dynamics offers a systematic structure—which underlies these practical disciplines—that embraces empirical and semi-empirical laws derived from flow measurement and used to solve practical problems. The solution to a fluid dynamics problem typically involves the calculation of various properties of the fluid, such as flow velocity, pressure, density, and temperature, as functions of space and time. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vorticity
In continuum mechanics, vorticity is a pseudovector field that describes the local spinning motion of a continuum near some point (the tendency of something to rotate), as would be seen by an observer located at that point and traveling along with the flow. It is an important quantity in the dynamical theory of fluids and provides a convenient framework for understanding a variety of complex flow phenomena, such as the formation and motion of vortex rings. Mathematically, the vorticity \vec is the curl of the flow velocity \vec: :\vec \equiv \nabla \times \vec\,, where \nabla is the nabla operator. Conceptually, \vec could be determined by marking parts of a continuum in a small neighborhood of the point in question, and watching their ''relative'' displacements as they move along the flow. The vorticity \vec would be twice the mean angular velocity vector of those particles relative to their center of mass, oriented according to the right-hand rule. In a two-dimensional fl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ludwig Prandtl
Ludwig Prandtl (4 February 1875 – 15 August 1953) was a German fluid dynamicist, physicist and aerospace scientist. He was a pioneer in the development of rigorous systematic mathematical analyses which he used for underlying the science of aerodynamics, which have come to form the basis of the applied science of aeronautical engineering. In the 1920s he developed the mathematical basis for the fundamental principles of subsonic aerodynamics in particular; and in general up to and including transonic velocities. His studies identified the boundary layer, thin-airfoils, and lifting-line theories. The Prandtl number was named after him. Early years Prandtl was born in Freising, near Munich, in 1875. His mother suffered from a lengthy illness and, as a result, Ludwig spent more time with his father, a professor of engineering. His father also encouraged him to observe nature and think about his observations. He entered the Technische Hochschule Munich in 1894 and graduated wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


George Batchelor
George Keith Batchelor FRS (8 March 1920 – 30 March 2000) was an Australian applied mathematician and fluid dynamicist. He was for many years a Professor of Applied Mathematics in the University of Cambridge, and was founding head of the Department of Applied Mathematics and Theoretical Physics (DAMTP). In 1956 he founded the influential ''Journal of Fluid Mechanics'' which he edited for some forty years. Prior to Cambridge he studied at Melbourne High School and University of Melbourne. As an applied mathematician (and for some years at Cambridge a co-worker with Sir Geoffrey Taylor in the field of turbulent flow), he was a keen advocate of the need for physical understanding and sound experimental basis. His ''An Introduction to Fluid Dynamics'' (CUP, 1967) is still considered a classic of the subject, and has been re-issued in the ''Cambridge Mathematical Library'' series, following strong current demand. Unusual for an 'elementary' textbook of that era, it presented a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Richard Feynman
Richard Phillips Feynman (; May 11, 1918 – February 15, 1988) was an American theoretical physicist, known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of the superfluidity of supercooled liquid helium, as well as his work in particle physics for which he proposed the parton model. For contributions to the development of quantum electrodynamics, Feynman received the Nobel Prize in Physics in 1965 jointly with Julian Schwinger and Shin'ichirō Tomonaga. Feynman developed a widely used pictorial representation scheme for the mathematical expressions describing the behavior of subatomic particles, which later became known as Feynman diagrams. During his lifetime, Feynman became one of the best-known scientists in the world. In a 1999 poll of 130 leading physicists worldwide by the British journal ''Physics World'', he was ranked the seventh-greatest physicist of all time. He assisted in the development o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paco Lagerstrom
Paco Axel Lagerstrom (February 24, 1914 – February 16, 1989) was an applied mathematician and aeronautical engineer. He was trained formally in mathematics, but worked for much of his career in aeronautical applications. He was known for work in applying the method of asymptotic expansion to fluid mechanics problems.Narasimha, R. (2004''Divide, conquer and unify'' Nature 432(7019), 807. Several of his works have become classics, including "Matched Asymptotic Expansions: Ideas And Techniques".Lagerstrom, P. A. (1988) Matched Asymptotic Expansions: Ideas And Techniques, Springer. Biography He was born on February 24, 1914, in Oskarshamn, Sweden. Lagerstrom earned bachelor's and master's degrees, in 1935 and 1939 respectively, at the University of Stockholm. He then came to America as a graduate student at Princeton University, earning a PhD in 1942 in mathematics under Salomon Bochner with a dissertation entitled "Measure and Integral in Partially Ordered Spaces". During thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reynolds Numbers
In fluid mechanics, the Reynolds number () is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow (eddy currents). These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation. The Reynolds number has wide applications, ranging from liquid flow in a pipe to the passage of air over an aircraft wing. It is used to predict the transition from laminar to turbulent flow and is used in the scaling of similar but different-sized flow situations, such as between an aircraft model in a wind tunnel and the full-size vers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euler Equations (fluid Dynamics)
In fluid dynamics, the Euler equations are a set of quasilinear partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity. The Euler equations can be applied to incompressible or compressible flow. The incompressible Euler equations consist of Cauchy equations for conservation of mass and balance of momentum, together with the incompressibility condition that the flow velocity is a solenoidal field. The compressible Euler equations consist of equations for conservation of mass, balance of momentum, and balance of energy, together with a suitable constitutive equation for the specific energy density of the fluid. Historically, only the equations of conservation of mass and balance of momentum were derived by Euler. However, fluid dynamics literature often refers to the full set of the compressible Euler equations – ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stream Function
The stream function is defined for incompressible flow, incompressible (divergence-free) fluid flow, flows in two dimensions – as well as in three dimensions with axisymmetry. The flow velocity components can be expressed as the derivatives of the scalar field, scalar stream function. The stream function can be used to plot Streamlines, streaklines, and pathlines, streamlines, which represent the trajectories of particles in a steady flow. The two-dimensional Lagrange stream function was introduced by Joseph Louis Lagrange in 1781. The Stokes stream function is for axisymmetrical three-dimensional flow, and is named after George Gabriel Stokes. Considering the particular case of fluid dynamics, the difference between the stream function values at any two points gives the volumetric flow rate (or volumetric flux) through a line connecting the two points. Since streamlines are tangent to the flow velocity vector of the flow, the value of the stream function must be constant along ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Circulation (physics)
In physics, circulation is the line integral of a vector field around a closed curve. In fluid dynamics, the field is the fluid velocity field. In electrodynamics, it can be the electric or the magnetic field. Circulation was first used independently by Frederick Lanchester, Martin Kutta and Nikolay Zhukovsky. It is usually denoted Γ (Greek uppercase gamma). Definition and properties If V is a vector field and dl is a vector representing the differential length of a small element of a defined curve, the contribution of that differential length to circulation is dΓ: :\mathrm\Gamma=\mathbf\cdot \mathrm\mathbf=, \mathbf, , \mathrm\mathbf, \cos \theta. Here, ''θ'' is the angle between the vectors V and dl. The circulation Γ of a vector field V around a closed curve ''C'' is the line integral: :\Gamma=\oint_\mathbf\cdot \mathrm d \mathbf. In a conservative vector field this integral evaluates to zero for every closed curve. That means that a line integral between any two po ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Stokes Theorem
In vector calculus and differential geometry the generalized Stokes theorem (sometimes with apostrophe as Stokes' theorem or Stokes's theorem), also called the Stokes–Cartan theorem, is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus. In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, and Stokes' theorem is the case of a surface in \R^3. Hence, the theorem is sometimes referred to as the Fundamental Theorem of Multivariate Calculus. Stokes' theorem says that the integral of a differential form \omega over the boundary \partial\Omega of some orientable manifold \Omega is equal to the integral of its exterior derivative d\omega over the whole of \Omega, i.e., \int_ \omega = \int_\Omega d\omega\,. Stokes' theorem was formulated in its modern form by Élie Cartan in 1945, following earlier work on the generalization of the theo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]