Porro–Abbe Prism
   HOME
*





Porro–Abbe Prism
A Porro–Abbe prism (sometimes called a Abbe–Porro prism), named for Ignazio Porro and Ernst Abbe, is a type of reflection prism used in some optical instruments to alter the orientation of an image. It is a variant of the more common double Porro prism configuration. It is made from a piece of glass shaped like four right-angled reflecting prisms joined face-to-face in a twisted fashion. Light enters one flat face, is internally reflected four times from the sloping faces of the prism, and exits the second flat face offset from, but in the same direction as the entrance beam. The image is rotated 180° in the process, and for this reason the prism is used as an ''image erection system'' in some binoculars, and camera viewfinders. The Porro–Abbe system reduces the lateral beam axis offset by 23% compared to a traditional double Porro prism system in binoculars. The prism is not dispersive since light enters and exits the prism only at normal incidence. Since the light is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abbe Prism
In optics, an Abbe prism, named for its inventor, the German physicist Ernst Abbe, is a type of ''constant deviation dispersive prism'' similar to a Pellin–Broca prism. Structure The prism consists of a block of glass forming a right prism with 30°–60°–90° triangular faces. When in use, a beam of light enters face AB, is refracted and undergoes total internal reflection from face BC, and is refracted again on exiting face AC. The prism is designed such that one particular wavelength of the light exits the prism at a deviation angle (relative to the light's original path) of exactly 60°. This is the minimum possible deviation of the prism, all other wavelengths being deviated by greater angles. By rotating the prism (in the plane of the diagram) around any point O on the face AB, the wavelength which is deviated by 60° can be selected. The dispersive Abbe prism should not be confused with the non-dispersive Porro–Abbe or Abbe–Koenig prism An Abbe–Koenig prism ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abbe–Koenig Prism
An Abbe–Koenig prism is a type of reflecting prism, used to invert an image (rotate it by 180°). They are commonly used in binoculars and some telescopes for this purpose. The prism is named after Ernst Abbe and Albert Koenig. The prism is made from two glass prisms, which are optically cemented together to form a symmetric, shallow Vee-shaped assembly. Light enters one face at normal incidence, is internally reflected from a 30° sloped face, and then is reflected from a "roof" (German ''Dach'') section (consisting of two faces meeting at a 90° angle) at the bottom of the prism. The light is then reflected from the opposite 30° face and exits, again at normal incidence. The net effect of the four internal reflections (two reflections are on roof plains) is to flip the image both vertically and horizontally. Since the light is reflected an even number of times, this produces a 180° image rotation (without changing the image's handedness and allows use of the prism as an ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ignazio Porro
Ignazio Porro (25 November 1801 – 8 October 1875) was an Italian inventor of optical instruments. Porro's name is most closely associated with the prism system which he invented around 1850 and which is used in the construction of Porro prism In optics, a Porro prism, named for its inventor Ignazio Porro, is a type of ''reflection prism'' used in optical instruments to alter the orientation of an image. Description It consists of a block of material shaped like a right geometric ... binoculars. He also developed a strip camera in 1853 for mapping, which was one of the earliest such.How strip-photography complicated the interpretation of the still photographic image
", Maarten Vanvolsem


References< ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



picture info

Ernst Abbe
Ernst Karl Abbe HonFRMS (23 January 1840 – 14 January 1905) was a German physicist, optical scientist, entrepreneur, and social reformer. Together with Otto Schott and Carl Zeiss, he developed numerous optical instruments. He was also a co-owner of Carl Zeiss AG, a German manufacturer of scientific microscopes, astronomical telescopes, planetariums, and other advanced optical systems. Personal life Abbe was born 23 January 1840 in Eisenach, Saxe-Weimar-Eisenach, to Georg Adam Abbe and Elisabeth Christina Barchfeldt. He came from a humble home – his father was a foreman in a spinnery. Supported by his father's employer, Abbe was able to attend secondary school and to obtain the general qualification for university entrance with fairly good grades, at the Eisenach Gymnasium, which he graduated from in 1857. By the time he left school, his scientific talent and his strong will had already become obvious. Thus, in spite of the family's strained financial situation, his father ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prism (optics)
An optical prism is a transparent optics, optical element with flat, polished surfaces that are designed to refraction, refract light. At least one surface must be angled — elements with two parallel surfaces are ''not'' prisms. The most familiar type of optical prism is the triangular prism, which has a triangular base and rectangular sides. Not all optical prisms are prism (geometry), geometric prisms, and not all geometric prisms would count as an optical prism. Prisms can be made from any material that is transparent to the wavelengths for which they are designed. Typical materials include glass, acrylic glass, acrylic and fluorite#Optics, fluorite. A dispersive prism can be used to break white#White light, white light up into its constituent spectral colors (the colors of the rainbow) as described in the following section. Other types of prisms noted below can be used to reflection (physics), reflect light, or to split light into components with different polarization (w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Optical Instruments
An optical instrument (or "optic" for short) is a device that processes light waves (or photons), either to enhance an image for viewing or to analyze and determine their characteristic properties. Common examples include periscopes, microscopes, telescopes, and cameras. Image enhancement The first optical instruments were telescopes used for magnification of distant images, and microscopes used for magnifying very tiny images. Since the days of Galileo and Van Leeuwenhoek, these instruments have been greatly improved and extended into other portions of the electromagnetic spectrum. The binocular device is a generally compact instrument for both eyes designed for mobile use. A camera could be considered a type of optical instrument, with the pinhole camera and camera obscura being very simple examples of such devices. Analysis Another class of optical instrument is used to analyze the properties of light or optical materials. They include: *Interferometer for measuring the in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Porro Prism
In optics, a Porro prism, named for its inventor Ignazio Porro, is a type of ''reflection prism'' used in optical instruments to alter the orientation of an image. Description It consists of a block of material shaped like a right geometric prism with right-angled triangular end faces. In operation, light enters the large rectangular face of the prism, undergoes total internal reflection twice from the sloped faces, and exits again through the large rectangular face. When the light enters and therefore exits the glass at normal incidence, the prism is not dispersive. An image travelling through a Porro prism is rotated by 180° and exits in the opposite direction offset from its entry point. While a single Porro prism can be constructed to work as well as a roof prism, it is seldom used as such. Therefore, to reduce the cost of production for a Porro prism, the edge of the roof is usually left out. Sometimes only one small window as an entrance surface and one window as e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Total Internal Reflection
Total internal reflection (TIR) is the optical phenomenon in which waves arriving at the interface (boundary) from one medium to another (e.g., from water to air) are not refracted into the second ("external") medium, but completely reflected back into the first ("internal") medium. It occurs when the second medium has a higher wave speed (i.e., lower refractive index) than the first, and the waves are incident at a sufficiently oblique angle on the interface. For example, the water-to-air surface in a typical fish tank, when viewed obliquely from below, reflects the underwater scene like a mirror with no loss of brightness (Fig.1). TIR occurs not only with electromagnetic waves such as light and microwaves, but also with other types of waves, including sound and water waves. If the waves are capable of forming a narrow beam (Fig.2), the reflection tends to be described in terms of "rays" rather than waves; in a medium whose properties are independent of direction, such as air, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binoculars
Binoculars or field glasses are two refracting telescopes mounted side-by-side and aligned to point in the same direction, allowing the viewer to use both eyes (binocular vision) when viewing distant objects. Most binoculars are sized to be held using both hands, although sizes vary widely from opera glasses to large pedestal-mounted military models. Unlike a (monocular) telescope, binoculars give users a three-dimensional image: each eyepiece presents a slightly different image to each of the viewer's eyes and the parallax allows the visual cortex to generate an impression of depth. Optical designs Galilean Almost from the invention of the telescope in the 17th century the advantages of mounting two of them side by side for binocular vision seems to have been explored. Most early binoculars used Galilean optics; that is, they used a convex objective and a concave eyepiece lens. The Galilean design has the advantage of presenting an erect image but has a narrow field of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Camera
A camera is an Optics, optical instrument that can capture an image. Most cameras can capture 2D images, with some more advanced models being able to capture 3D images. At a basic level, most cameras consist of sealed boxes (the camera body), with a small hole (the aperture) that allows light to pass through in order to capture an image on a light-sensitive surface (usually a Image sensor, digital sensor or photographic film). Cameras have various mechanisms to control how the light falls onto the light-sensitive surface. Lenses focus the light entering the camera, and the aperture can be narrowed or widened. A Shutter (photography), shutter mechanism determines the amount of time the photosensitive surface is exposed to the light. The still image camera is the main instrument in the art of photography. Captured images may be reproduced later as part of the process of photography, digital imaging, or photographic printing. Similar artistic fields in the moving-image camera dom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Viewfinder
In photography, a viewfinder is what the photographer looks through to compose, and, in many cases, to focus the picture. Most viewfinders are separate, and suffer parallax, while the single-lens reflex camera lets the viewfinder use the main optical system. Viewfinders are used in many cameras of different types: still and movie, film, analog and digital. A zoom camera usually zooms its finder in sync with its lens, one exception being rangefinder cameras. History Before the development of microelectronics and electronic display devices, only optical viewfinders existed. Direct optical viewfinders Direct viewfinders are essentially miniature Galilean telescopes; the viewer's eye was placed at the back, and the scene viewed through the viewfinder optics. A declining minority of point and shoot cameras use them. Parallax error results from the viewfinder being offset from the lens axis, to point above and usually to one side of the lens. The error varies with distance, being ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]