HOME
*



picture info

Polaron
A polaron is a quasiparticle used in condensed matter physics to understand the interactions between electrons and atoms in a solid material. The polaron concept was proposed by Lev Landau in 1933 and Solomon Pekar in 1946 to describe an electron moving in a dielectric crystal where the atoms displace from their equilibrium positions to effectively screen the charge of an electron, known as a phonon cloud. This lowers the electron mobility and increases the electron's effective mass. The general concept of a polaron has been extended to describe other interactions between the electrons and ions in metals that result in a bound state, or a lowering of energy compared to the non-interacting system. Major theoretical work has focused on solving Fröhlich and Holstein Hamiltonians. This is still an active field of research to find exact numerical solutions to the case of one or two electrons in a large crystal lattice, and to study the case of many interacting electrons. Experime ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polaron Scheme1
A polaron is a quasiparticle used in condensed matter physics to understand the interactions between electrons and atoms in a solid material. The polaron concept was proposed by Lev Landau in 1933 and Solomon Pekar in 1946 to describe an electron moving in a dielectric crystal where the atoms displace from their equilibrium positions to effectively screen the charge of an electron, known as a phonon cloud. This lowers the electron mobility and increases the electron's effective mass. The general concept of a polaron has been extended to describe other interactions between the electrons and ions in metals that result in a bound state, or a lowering of energy compared to the non-interacting system. Major theoretical work has focused on solving Fröhlich and Holstein Hamiltonians. This is still an active field of research to find exact numerical solutions to the case of one or two electrons in a large crystal lattice, and to study the case of many interacting electrons. Experime ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Solomon Pekar
Solomon Isaakovich Pekar ( uk, Соломон Ісаакович Пекар; russian: Соломон Исаакович Пекар; 16 March 1917 – 8 July 1985) was a Soviet theoretical physicist, born in Kyiv, Ukraine. He was a full Member of the Ukrainian Academy of Sciences and is known for his fundamental contributions to condensed matter physics, especially for introducing and advancing the concept of polaron as a charge carrier in solids. Career In 1941 Pekar submitted his Candidate of Science thesis on nonlinear theory of semiconductor rectifiers for which he was awarded Doctor of Science Degree, this work was strongly approved by Lev Landau. In 1946, Pekar developed a concept of a polaron and coined this term.  The model developed in this paper is macroscopic and based on electrostatic coupling of an electron to polar optical phonons. This coupling results in dressing of the electron by a cloud of virtual phonons and renormalization of its energy spectrum. In the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solomon Isaakovich Pekar
Solomon Isaakovich Pekar ( uk, Соломон Ісаакович Пекар; russian: Соломон Исаакович Пекар; 16 March 1917 – 8 July 1985) was a Soviet theoretical physicist, born in Kyiv, Ukraine. He was a full Member of the Ukrainian Academy of Sciences and is known for his fundamental contributions to condensed matter physics, especially for introducing and advancing the concept of polaron as a charge carrier in solids. Career In 1941 Pekar submitted his Candidate of Science thesis on nonlinear theory of semiconductor rectifiers for which he was awarded Doctor of Science Degree, this work was strongly approved by Lev Landau. In 1946, Pekar developed a concept of a polaron and coined this term.  The model developed in this paper is macroscopic and based on electrostatic coupling of an electron to polar optical phonons. This coupling results in dressing of the electron by a cloud of virtual phonons and renormalization of its energy spectrum. In the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Organic Semiconductors
Organic semiconductors are solids whose building blocks are pi-bonded molecules or polymers made up by carbon and hydrogen atoms and – at times – heteroatoms such as nitrogen, sulfur and oxygen. They exist in the form of molecular crystals or amorphous thin films. In general, they are electrical insulators, but become semiconducting when charges are either injected from appropriate electrodes, upon doping or by photoexcitation. General properties In molecular crystals the energetic separation between the top of the valence band and the bottom conduction band, i.e. the band gap, is typically 2.5–4 eV, while in inorganic semiconductors the band gaps are typically 1–2 eV. This implies that they are, in fact, insulators rather than semiconductors in the conventional sense. They become semiconducting only when charge carriers are either injected from the electrodes or generated by intentional or unintentional doping. Charge carriers can also be generated in the cours ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Organic Solar Cells
An organic solar cell (OSC) or plastic solar cell is a type of photovoltaic that uses organic electronics, a branch of electronics that deals with conductive organic polymers or small organic molecules, for light absorption and charge transport to produce electricity from sunlight by the photovoltaic effect. Most organic photovoltaic cells are polymer solar cells. The molecules used in organic solar cells are solution-processable at high throughput and are cheap, resulting in low production costs to fabricate a large volume. Combined with the flexibility of organic molecules, organic solar cells are potentially cost-effective for photovoltaic applications. Molecular engineering (''e.g.,'' changing the length and functional group of polymers) can change the band gap, allowing for electronic tunability. The Attenuation coefficient, optical absorption coefficient of organic molecules is high, so a large amount of light can be absorbed with a small amount of materials, usually on the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Herbert Fröhlich
Herbert Fröhlich (9 December 1905 – 23 January 1991) FRS was a German-born British physicist. Career In 1927, Fröhlich entered Ludwig-Maximilians University in Munich to study physics, and received his doctorate under Arnold Sommerfeld in 1930. His first position was as Privatdozent at the University of Freiburg. Due to rising anti-Semitism and the Deutsche Physik movement under Adolf Hitler, and at the invitation of Yakov Frenkel, Fröhlich went to the Soviet Union, in 1933, to work at the Ioffe Physico-Technical Institute in Leningrad. During the Great Purge following the murder of Sergei Kirov, he fled to England in 1935. Except for a short visit to the Netherlands and a brief internment during World War II, he worked in Nevill Francis Mott's department, at the University of Bristol, until 1948, rising to the position of Reader. At the invitation of James Chadwick, he took the Chair for Theoretical Physics at the University of Liverpool. In 1950 Bell Telephone Laborato ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polariton
In physics, polaritons are quasiparticles resulting from strong coupling of electromagnetic waves with an electric or magnetic dipole-carrying excitation. They are an expression of the common quantum phenomenon known as level repulsion, also known as the avoided crossing principle. Polaritons describe the crossing of the dispersion of light with any interacting resonance. To this extent polaritons can also be thought of as the new normal modes of a given material or structure arising from the strong coupling of the bare modes, which are the photon and the dipolar oscillation. The polariton is a bosonic quasiparticle, and should not be confused with the polaron (a fermionic quasiparticle), which is an electron plus an attached phonon cloud. Whenever the polariton picture is valid (i.e., when the weak coupling limit is an invalid approximation), the model of photons propagating freely in crystals is insufficient. A major feature of polaritons is a strong dependency of the propag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quasiparticle
In physics, quasiparticles and collective excitations are closely related emergent phenomena arising when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in vacuum. For example, as an electron travels through a semiconductor, its motion is disturbed in a complex way by its interactions with other electrons and with atomic nucleus, atomic nuclei. The electron behaves as though it has a different effective mass (solid-state physics), effective mass travelling unperturbed in vacuum. Such an electron is called an ''electron quasiparticle''. In another example, the aggregate motion of electrons in the valence band of a semiconductor or a hole band in a metal behave as though the material instead contained positively charged quasiparticles called ''electron holes''. Other quasiparticles or collective excitations include the ''phonon'', a quasiparticle derived from the vibrations of atoms in a solid, and the ''plasmo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

F-center
An F center or Farbe center (from the original German ''Farbzentrum'', where ''Farbe'' means ''color'' and ''zentrum'' means center) is a type of crystallographic defect in which an anionic vacancy in a crystal lattice is occupied by one or more unpaired electrons. Electrons in such a vacancy in a crystal lattice tend to absorb light in the visible spectrum such that a material that is usually Transparency (optics), transparent becomes colored. The greater the number of F centers, the more intense the color of the compound. F centers are a type of color center. This is used to identify many compounds, especially zinc oxide (yellow). History Before the discovery of point defects it was already known that some crystals can be discolored using various methods. In 1830 T.J. Pearsall discovered that fluorspar could be discolored using violet light. Thirty years later similar results were achieved by melting crystals together with a specific metal. In 1921 Wilhelm Röntgen, W. Röntgen e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bloch Spectrum
The Bloch spectrum is a concept in quantum mechanics in the field of theoretical physics; this concept addresses certain energy spectrum considerations. Let ''H'' be the one-dimensional Schrödinger equation operator : H = - \frac + U_\alpha, where ''Uα'' is a periodic function of period ''α''. The Bloch spectrum"An upper bound on the allowed bands of the Bloch spectrum of one-dimensional Schrödinger operators with periodic potentials", N. N. Meiman, ''Journal of Mathematical Physics'', March, 1983, volume 24, issue 3, pp. 539–540 of ''H'' is defined as the set of values ''E'' for which all the solutions of (''H'' − ''E'')φ = 0 are bounded on the whole real axis In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a poi .... The Bloch spectrum consists of the half-line ''E' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Crystal Lattice
In geometry and crystallography, a Bravais lattice, named after , is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by : \mathbf = n_1 \mathbf_1 + n_2 \mathbf_2 + n_3 \mathbf_3, where the ''ni'' are any integers, and a''i'' are ''primitive translation vectors'', or ''primitive vectors'', which lie in different directions (not necessarily mutually perpendicular) and span the lattice. The choice of primitive vectors for a given Bravais lattice is not unique. A fundamental aspect of any Bravais lattice is that, for any choice of direction, the lattice appears exactly the same from each of the discrete lattice points when looking in that chosen direction. The Bravais lattice concept is used to formally define a ''crystalline arrangement'' and its (finite) frontiers. A crystal is made up of one or more atoms, called the ''basis'' or ''motif'', at each lattice point. The ''basis'' may consist of atoms, mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bosonic
In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spin (,, ...). Every observed subatomic particle is either a boson or a fermion. Bosons are named after physicist Satyendra Nath Bose. Some bosons are elementary particles and occupy a special role in particle physics unlike that of fermions, which are sometimes described as the constituents of "ordinary matter". Some elementary bosons (for example, gluons) act as force carriers, which give rise to forces between other particles, while one (the Higgs boson) gives rise to the phenomenon of mass. Other bosons, such as mesons, are composite particles made up of smaller constituents. Outside the realm of particle physics, superfluidity arises because composite bosons (bose particles), such as low temperature helium-4 atoms, follow Bose–Einst ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]