Pointer State
   HOME
*





Pointer State
In quantum Darwinism and similar theories, pointer states are quantum states, sometimes of a measuring apparatus, if present, that are less perturbed by decoherence than other states, and are the quantum equivalents of the classical states of the system after decoherence has occurred through interaction with the environment. 'Pointer' refers to the reading of a recording or measuring device, which in old analog versions would often have a gauge or pointer display. See also * Einselection In quantum mechanics, einselections, short for "environment-induced superselection", is a name coined by Wojciech H. Zurek for a process which is claimed to explain the appearance of wavefunction collapse and the emergence of classical descripti ... * Mott problem References Quantum mechanics {{quantum-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Darwinism
Quantum Darwinism is a theory meant to explain the emergence of the Classical physics, classical world from the Quantum mechanics, quantum world as due to a process of Charles Darwin, Darwinian natural selection induced by the environment interacting with the quantum system; where the many possible quantum states are selected against in favor of a stable pointer state. It was proposed in 2003 by Wojciech Zurek and a group of collaborators including Ollivier, Poulin, Paz and Blume-Kohout. The development of the theory is due to the integration of a number of Zurek's research topics pursued over the course of twenty-five years including: pointer states, einselection and decoherence. A study in 2010 is claimed to provide preliminary supporting evidence of quantum Darwinism with scars of a quantum dot "becoming a family of mother-daughter states" indicating they could "stabilize into multiple pointer states", * additionally a similar kind of scene has been suggested with perturbation-i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum State
In quantum physics, a quantum state is a mathematical entity that provides a probability distribution for the outcomes of each possible measurement on a system. Knowledge of the quantum state together with the rules for the system's evolution in time exhausts all that can be predicted about the system's behavior. A mixture of quantum states is again a quantum state. Quantum states that cannot be written as a mixture of other states are called pure quantum states, while all other states are called mixed quantum states. A pure quantum state can be represented by a ray in a Hilbert space over the complex numbers, while mixed states are represented by density matrices, which are positive semidefinite operators that act on Hilbert spaces. Pure states are also known as state vectors or wave functions, the latter term applying particularly when they are represented as functions of position or momentum. For example, when dealing with the energy spectrum of the electron in a hydrogen at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Decoherence
Quantum decoherence is the loss of quantum coherence. In quantum mechanics, particles such as electrons are described by a wave function, a mathematical representation of the quantum state of a system; a probabilistic interpretation of the wave function is used to explain various quantum effects. As long as there exists a definite phase relation between different states, the system is said to be coherent. A definite phase relationship is necessary to perform quantum computing on quantum information encoded in quantum states. Coherence is preserved under the laws of quantum physics. If a quantum system were perfectly isolated, it would maintain coherence indefinitely, but it would be impossible to manipulate or investigate it. If it is not perfectly isolated, for example during a measurement, coherence is shared with the environment and appears to be lost with time; a process called quantum decoherence. As a result of this process, quantum behavior is apparently lost, just as e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauge (instrument)
A gauge, in science and engineering, is a device used to make measurements or in order to display certain dimensional information. A wide variety of tools exist which serve such functions, ranging from simple pieces of material against which sizes can be measured to complex pieces of machinery. Depending on usage, a gauge can be described as "a device for measuring a physical quantity",Richard Talman, ''Geometric Mechanics'' (2008), p. 255-56: "a "gauge" is a device for measuring a physical quantity—a thermometer is a temperature gauge, a ruler is a length gauge".. for example "to determine thickness, gap in space, diameter of materials, or pressure of flow",Ray Herren, ''Agricultural Mechanics: Fundamentals & Applications'' (2009), p. 109: "A gauge is a device used to determine thickness, gap in space, diameter of materials, or pressure of flow". or "a device that displays the measurement of a monitored system by the use of a needle or pointer that moves along a calibrated scale". ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Einselection
In quantum mechanics, einselections, short for "environment-induced superselection", is a name coined by Wojciech H. Zurek for a process which is claimed to explain the appearance of wavefunction collapse and the emergence of classical descriptions of reality from quantum descriptions. In this approach, classicality is described as an emergent property induced in open quantum systems by their environments. Due to the interaction with the environment, the vast majority of states in the Hilbert space of a quantum open system become highly unstable due to entangling interaction with the environment, which in effect monitors selected observables of the system. After a decoherence time, which for macroscopic objects is typically many orders of magnitude shorter than any other dynamical timescale, a generic quantum state decays into an uncertain state which can be expressed as a mixture of simple pointer states. In this way the environment induces effective superselection rules. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mott Problem
In quantum mechanics, the Mott problem is a paradox that illustrates some of the difficulties of understanding the nature of wave function collapse and measurement in quantum mechanics. The problem was first formulated in 1929 by Sir Nevill Francis Mott and Werner Heisenberg, illustrating the paradox of the collapse of a spherically symmetric wave function into the linear tracks seen in a cloud chamber. In practice, virtually all high energy physics experiments, such as those conducted at particle colliders, involve wave functions which are inherently spherical. Yet, when the results of a particle collision are detected, they are invariably in the form of linear tracks (see, for example, the illustrations accompanying the article on bubble chambers). It is somewhat strange to think that a spherically symmetric wave function should be observed as a straight track, and yet, this occurs on a daily basis in all particle collider experiments. A related variant formulation was giv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]