Point-pair Separation
In a cyclic order, such as the real projective line, two pairs of points separate each other when they occur alternately in the order. Thus the ordering ''a b c d'' of four points has (''a,c'') and (''b,d'') as separating pairs. This point-pair separation is an invariant of projectivities of the line. The concept was described by G. B. Halsted at the outset of his ''Synthetic Projective Geometry'': {{quote, With regard to a pair of different points of those on a straight, all remaining fall into two classes, such that every point belongs to one and only one. If two points belong to different classes with regard to a pair of points, then also the latter two belong to different classes with regard to the first two. Two such point pairs are said to 'separate each other.' Four different points on a straight can always be partitioned in one and only one way into pairs separating each other. Given any pair of points on a projective line, they separate a third point from its harmoni ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cyclic Order
In mathematics, a cyclic order is a way to arrange a set of objects in a circle. Unlike most structures in order theory, a cyclic order is not modeled as a binary relation, such as "". One does not say that east is "more clockwise" than west. Instead, a cyclic order is defined as a ternary relation , meaning "after , one reaches before ". For example, une, October, February but not une, February, October cf. picture. A ternary relation is called a cyclic order if it is cyclic, asymmetric, transitive, and connected. Dropping the "connected" requirement results in a partial cyclic order. A set with a cyclic order is called a cyclically ordered set or simply a cycle. Some familiar cycles are discrete, having only a finite number of elements: there are seven days of the week, four cardinal directions, twelve notes in the chromatic scale, and three plays in rock-paper-scissors. In a finite cycle, each element has a "next element" and a "previous element". There are also continu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Projective Line
In geometry, a real projective line is a projective line over the real numbers. It is an extension of the usual concept of a line that has been historically introduced to solve a problem set by visual perspective: two parallel lines do not intersect but seem to intersect "at infinity". For solving this problem, points at infinity have been introduced, in such a way that in a real projective plane, two distinct projective lines meet in exactly one point. The set of these points at infinity, the "horizon" of the visual perspective in the plane, is a real projective line. It is the set of directions emanating from an observer situated at any point, with opposite directions identified. An example of a real projective line is the projectively extended real line, which is often called ''the'' projective line. Formally, a real projective line P(R) is defined as the set of all one-dimensional linear subspaces of a two-dimensional vector space over the reals. The automorphisms of a r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Projective Harmonic Conjugate
In projective geometry, the harmonic conjugate point of an ordered triple of points on the real projective line is defined by the following construction: :Given three collinear points , let be a point not lying on their join and let any line through meet at respectively. If and meet at , and meets at , then is called the harmonic conjugate of with respect to . The point does not depend on what point is taken initially, nor upon what line through is used to find and . This fact follows from Desargues theorem. In real projective geometry, harmonic conjugacy can also be defined in terms of the cross-ratio as . Cross-ratio criterion The four points are sometimes called a harmonic range (on the real projective line) as it is found that always divides the segment ''internally'' in the same proportion as divides ''externally''. That is: :, AC, :, BC, = , AD, :, DB, \, . If these segments are now endowed with the ordinary metric interpretation of real num ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pencil (mathematics)
In geometry, a pencil is a family of geometric objects with a common property, for example the set of lines that pass through a given point in a plane, or the set of circles that pass through two given points in a plane. Although the definition of a pencil is rather vague, the common characteristic is that the pencil is completely determined by any two of its members. Analogously, a set of geometric objects that are determined by any three of its members is called a bundle. Thus, the set of all lines through a point in three-space is a bundle of lines, any two of which determine a pencil of lines. To emphasize the two dimensional nature of such a pencil, it is sometimes referred to as a ''flat pencil''. Any geometric object can be used in a pencil. The common ones are lines, planes, circles, conics, spheres, and general curves. Even points can be used. A pencil of points is the set of all points on a given line. A more common term for this set is a ''range'' of points. Penci ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transversal (geometry)
In geometry, a transversal is a line that passes through two lines in the same plane at two distinct points. Transversals play a role in establishing whether two or more other lines in the Euclidean plane are parallel. The intersections of a transversal with two lines create various types of pairs of angles: consecutive interior angles, consecutive exterior angles, corresponding angles, and alternate angles. As a consequence of Euclid's parallel postulate, if the two lines are parallel, consecutive interior angles are supplementary, corresponding angles are equal, and alternate angles are equal. Angles of a transversal A transversal produces 8 angles, as shown in the graph at the above left: *4 with each of the two lines, namely α, β, γ and δ and then α1, β1, γ1 and δ1; and *4 of which are interior (between the two lines), namely α, β, γ1 and δ1 and 4 of which are exterior, namely α1, β1, γ and δ. A transversal that cuts two parallel lines at right angles ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Separation Relation
In mathematics, a separation relation is a formal way to arrange a set of objects in an unoriented circle. It is defined as a quaternary relation ' satisfying certain axioms, which is interpreted as asserting that ''a'' and ''c'' separate ''b'' from ''d''. Whereas a linear order endows a set with a positive end and a negative end, a separation relation forgets not only which end is which, but also where the ends are located. In this way it is a final, further weakening of the concepts of a betweenness relation and a cyclic order. There is nothing else that can be forgotten: up to the relevant sense of interdefinability, these three relations are the only nontrivial reducts of the ordered set of rational numbers. Application The separation may be used in showing the real projective plane is a complete space. The separation relation was described with axioms in 1898 by Giovanni Vailati. * ' = ' * ' = ' * ' ⇒ ¬ ' * ' ∨ ' ∨ ' * ' ∧ ' ⇒ '. The relation of separation of points ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Internet Archive
The Internet Archive is an American digital library with the stated mission of "universal access to all knowledge". It provides free public access to collections of digitized materials, including websites, software applications/games, music, movies/videos, moving images, and millions of books. In addition to its archiving function, the Archive is an activist organization, advocating a free and open Internet. , the Internet Archive holds over 35 million books and texts, 8.5 million movies, videos and TV shows, 894 thousand software programs, 14 million audio files, 4.4 million images, 2.4 million TV clips, 241 thousand concerts, and over 734 billion web pages in the Wayback Machine. The Internet Archive allows the public to upload and download digital material to its data cluster, but the bulk of its data is collected automatically by its web crawlers, which work to preserve as much of the public web as possible. Its web archiving, web archive, the Wayback Machine, contains hu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proceedings Of The American Academy Of Arts And Sciences
''Dædalus'' is an academic journal founded in 1955 to replace the ''Proceedings of the American Academy of Arts and Sciences'', the volume and numbering system of which it continues. In 1958, it began quarterly publication as ''The Journal of the American Academy of Arts and Sciences''. The journal is published by MIT Press on behalf of the American Academy of Arts and Sciences The American Academy of Arts and Sciences (abbreviation: AAA&S) is one of the oldest learned societies in the United States. It was founded in 1780 during the American Revolution by John Adams, John Hancock, James Bowdoin, Andrew Oliver, and .... ''Dædalus'' publishes by invitation only. In January 2021, ''Dædalus'' became an open access publication. References External links * American Academy of Arts and Sciences ''Dædalus'' at MIT Press [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
JSTOR
JSTOR (; short for ''Journal Storage'') is a digital library founded in 1995 in New York City. Originally containing digitized back issues of academic journals, it now encompasses books and other primary sources as well as current issues of journals in the humanities and social sciences. It provides full-text searches of almost 2,000 journals. , more than 8,000 institutions in more than 160 countries had access to JSTOR. Most access is by subscription but some of the site is public domain, and open access content is available free of charge. JSTOR's revenue was $86 million in 2015. History William G. Bowen, president of Princeton University from 1972 to 1988, founded JSTOR in 1994. JSTOR was originally conceived as a solution to one of the problems faced by libraries, especially research and university libraries, due to the increasing number of academic journals in existence. Most libraries found it prohibitively expensive in terms of cost and space to maintain a comprehen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bertrand Russell
Bertrand Arthur William Russell, 3rd Earl Russell, (18 May 1872 – 2 February 1970) was a British mathematician, philosopher, logician, and public intellectual. He had a considerable influence on mathematics, logic, set theory, linguistics, artificial intelligence, cognitive science, computer science and various areas of analytic philosophy, especially philosophy of mathematics, philosophy of language, epistemology, and metaphysics.Stanford Encyclopedia of Philosophy"Bertrand Russell" 1 May 2003. He was one of the early 20th century's most prominent logicians, and a founder of analytic philosophy, along with his predecessor Gottlob Frege, his friend and colleague G. E. Moore and his student and protégé Ludwig Wittgenstein. Russell with Moore led the British "revolt against idealism". Together with his former teacher A. N. Whitehead, Russell wrote ''Principia Mathematica'', a milestone in the development of classical logic, and a major attempt to reduce the whole ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
The Principles Of Mathematics
''The Principles of Mathematics'' (''PoM'') is a 1903 book by Bertrand Russell, in which the author presented his famous paradox and argued his thesis that mathematics and logic are identical. The book presents a view of the foundations of mathematics and Meinongianism and has become a classic reference. It reported on developments by Giuseppe Peano, Mario Pieri, Richard Dedekind, Georg Cantor, and others. In 1905 Louis Couturat published a partial French translation that expanded the book's readership. In 1937 Russell prepared a new introduction saying, "Such interest as the book now possesses is historical, and consists in the fact that it represents a certain stage in the development of its subject." Further editions were printed in 1938, 1951, 1996, and 2009. Contents ''The Principles of Mathematics'' consists of 59 chapters divided into seven parts: indefinables in mathematics, number, quantity, order, infinity and continuity, space, matter and motion. In chapter on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |