Poinsot's Spirals
   HOME
*



picture info

Poinsot's Spirals
In mathematics, Poinsot's spirals are two spirals represented by the polar equations : r = a\ \operatorname (n\theta) : r = a\ \operatorname (n\theta) where csch is the hyperbolic cosecant, and sech is the hyperbolic secant. They are named after the French mathematician Louis Poinsot Louis Poinsot (3 January 1777 – 5 December 1859) was a French mathematician and physicist. Poinsot was the inventor of geometrical mechanics, showing how a system of forces acting on a rigid body could be resolved into a single force and a c .... Examples of the two types of Poinsot's spirals See also * Cotes's spiral References Spirals {{geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spiral
In mathematics, a spiral is a curve which emanates from a point, moving farther away as it revolves around the point. Helices Two major definitions of "spiral" in the American Heritage Dictionary are:Spiral
''American Heritage Dictionary of the English Language'', Houghton Mifflin Company, Fourth Edition, 2009.
# a curve on a plane that winds around a fixed center point at a continuously increasing or decreasing distance from the point. # a three-dimensional curve that turns around an axis at a constant or continuously varying distance while moving parallel to the axis; a . The first definition describes a

picture info

Polar Equation
In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point (analogous to the origin of a Cartesian coordinate system) is called the ''pole'', and the ray from the pole in the reference direction is the ''polar axis''. The distance from the pole is called the ''radial coordinate'', ''radial distance'' or simply ''radius'', and the angle is called the ''angular coordinate'', ''polar angle'', or ''azimuth''. Angles in polar notation are generally expressed in either degrees or radians (2 rad being equal to 360°). Grégoire de Saint-Vincent and Bonaventura Cavalieri independently introduced the concepts in the mid-17th century, though the actual term "polar coordinates" has been attributed to Gregorio Fontana in the 18th century. The initial motivation for the introduction of the polar system was the study of circular ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic Cosecant
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the unit hyperbola. Also, similarly to how the derivatives of and are and respectively, the derivatives of and are and respectively. Hyperbolic functions occur in the calculations of angles and distances in hyperbolic geometry. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary), cubic equations, and Laplace's equation in Cartesian coordinates. Laplace's equations are important in many areas of physics, including electromagnetic theory, heat transfer, fluid dynamics, and special relativity. The basic hyperbolic functions are: * hyperbolic sine "" (), * hyperbolic cosine "" (),''Collins Concise Dictionary'', p. 328 from which are derived: * hyperbolic tangent "" (), * hyp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic Secant
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the unit hyperbola. Also, similarly to how the derivatives of and are and respectively, the derivatives of and are and respectively. Hyperbolic functions occur in the calculations of angles and distances in hyperbolic geometry. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary), cubic equations, and Laplace's equation in Cartesian coordinates. Laplace's equations are important in many areas of physics, including electromagnetic theory, heat transfer, fluid dynamics, and special relativity. The basic hyperbolic functions are: * hyperbolic sine "" (), * hyperbolic cosine "" (),''Collins Concise Dictionary'', p. 328 from which are derived: * hyperbolic tangent "" (), * hyperb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Louis Poinsot
Louis Poinsot (3 January 1777 – 5 December 1859) was a French mathematician and physicist. Poinsot was the inventor of geometrical mechanics, showing how a system of forces acting on a rigid body could be resolved into a single force and a couple. Life :Everyone makes for himself a clear idea of the motion of a point, that is to say, of the motion of a corpuscle which one supposes to be infinitely small, and which one reduces by thought in some way to a mathematical point. ::—Louis Poinsot, ''Théorie nouvelle de la rotation des corps'' (1834) Louis was born in Paris on 3 January 1777. He attended the school of Lycée Louis-le-Grand for secondary preparatory education for entrance to the famous École Polytechnique. In October 1794, at age 17, he took the École Polytechnique entrance exam and failed the algebra section but was still accepted. A student there for two years, he left in 1797 to study at École des Ponts et Chaussées to become a civil engineer. Although now on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Poinsot2
Louis Poinsot (3 January 1777 – 5 December 1859) was a French mathematician and physicist. Poinsot was the inventor of geometrical mechanics, showing how a system of forces acting on a rigid body could be resolved into a single force and a couple. Life :Everyone makes for himself a clear idea of the motion of a point, that is to say, of the motion of a corpuscle which one supposes to be infinitely small, and which one reduces by thought in some way to a mathematical point. ::—Louis Poinsot, ''Théorie nouvelle de la rotation des corps'' (1834) Louis was born in Paris on 3 January 1777. He attended the school of Lycée Louis-le-Grand for secondary preparatory education for entrance to the famous École Polytechnique. In October 1794, at age 17, he took the École Polytechnique entrance exam and failed the algebra section but was still accepted. A student there for two years, he left in 1797 to study at École des Ponts et Chaussées to become a civil engineer. Although now on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cotes's Spiral
Introduction In physics and in the mathematics of plane curves, a Cotes's spiral (also written Cotes' spiral and Cotes spiral) is one of a family of spirals classified by Roger Cotes. Cotes introduces his analysis of these curves as follows: “It is proposed to list the different types of trajectories which bodies can move along when acted on by centripetal forces in the inverse ratio of the cubes of their distances, proceeding from a given place, with given speed, and direction.” (N. b. he does not describe them as spirals). The shape of spirals in the family depends on the parameters. The curves in polar coordinates, (''r'', ''θ''), ''r'' > 0 are defined by one of the following five equations: : \frac = \begin A \cosh(k\theta + \varepsilon) \\ A \exp(k\theta + \varepsilon) \\ A \sinh(k\theta + \varepsilon) \\ A (k\theta + \varepsilon) \\ A \cos(k\theta + \varepsilon) \\ \end ''A'' > 0, ''k'' > 0 and ''ε'' are arbitrary real number constants. ''A'' determines th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]