Phase Estimation
In quantum computing, the quantum phase estimation algorithm is a quantum algorithm to estimate the phase corresponding to an eigenvalue of a given unitary operator. Because the eigenvalues of a unitary operator always have unit modulus, they are characterized by their phase, and therefore the algorithm can be equivalently described as retrieving either the phase or the eigenvalue itself. The algorithm was initially introduced by Alexei Kitaev in 1995. Phase estimation is frequently used as a subroutine in other quantum algorithms, such as Shor's algorithm, the quantum algorithm for linear systems of equations, and the quantum counting algorithm. Overview of the algorithm The algorithm operates on two sets of qubits, referred to in this context as registers. The two registers contain n and m qubits, respectively. Let U be a unitary operator acting on the m-qubit register. The eigenvalues of a unitary operator have unit modulus, and are therefore characterized by their phase. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Computing
A quantum computer is a computer that exploits quantum mechanical phenomena. On small scales, physical matter exhibits properties of wave-particle duality, both particles and waves, and quantum computing takes advantage of this behavior using specialized hardware. Classical physics cannot explain the operation of these quantum devices, and a scalable quantum computer could perform some calculations Exponential growth, exponentially faster than any modern "classical" computer. Theoretically a large-scale quantum computer could post-quantum cryptography, break some widely used encryption schemes and aid physicists in performing quantum simulator, physical simulations; however, the current state of the art is largely experimental and impractical, with several obstacles to useful applications. The basic unit of information in quantum computing, the qubit (or "quantum bit"), serves the same function as the bit in classical computing. However, unlike a classical bit, which can be in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eigenvalues And Eigenvectors
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a constant factor \lambda when the linear transformation is applied to it: T\mathbf v=\lambda \mathbf v. The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor \lambda (possibly a negative or complex number). Geometrically, vectors are multi-dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. A linear transformation's eigenvectors are those vectors that are only stretched or shrunk, with neither rotation nor shear. The corresponding eigenvalue is the factor by which an eigenvector is stretched or shrunk. If the eigenvalue is negative, the eigenvector's direction is reversed. The ei ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Counting
The Quantum counting algorithm is a quantum algorithm for efficiently counting the number of solutions for a given search problem. The algorithm is based on the quantum phase estimation algorithm and on Grover's search algorithm. Counting problems are common in diverse fields such as statistical estimation, statistical physics, networking, etc. As for quantum computing, the ability to perform quantum counting efficiently is needed in order to use Grover's search algorithm (because running Grover's search algorithm requires knowing how many solutions exist). Moreover, this algorithm solves the quantum existence problem (namely, deciding whether ''any'' solution exists) as a special case. The algorithm was devised by Gilles Brassard, Peter Høyer and Alain Tapp in 1998. The problem Consider a finite set \^n of size N=2^n and a set B of "solutions" (that is a subset of \^n ). Define: : \begin f : \left\^n \to \ \\ f(x) = \begin 1 & x \in B \\ 0 & x \notin B \end \end In othe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hadamard Gate
The Hadamard transform (also known as the Walsh–Hadamard transform, Hadamard–Rademacher–Walsh transform, Walsh transform, or Walsh–Fourier transform) is an example of a generalized class of Fourier transforms. It performs an orthogonal, symmetric, involutive, linear operation on real numbers (or complex, or hypercomplex numbers, although the Hadamard matrices themselves are purely real). The Hadamard transform can be regarded as being built out of size-2 discrete Fourier transforms (DFTs), and is in fact equivalent to a multidimensional DFT of size . It decomposes an arbitrary input vector into a superposition of Walsh functions. The transform is named for the French mathematician Jacques Hadamard (), the German-American mathematician Hans Rademacher, and the American mathematician Joseph L. Walsh. Definition The Hadamard transform ''H''''m'' is a 2''m'' × 2''m'' matrix, the Hadamard matrix (scaled by a normalization factor), that transforms 2''m'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Measurement In Quantum Mechanics
In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. A fundamental feature of quantum theory is that the predictions it makes are probabilistic. The procedure for finding a probability involves combining a quantum state, which mathematically describes a quantum system, with a mathematical representation of the measurement to be performed on that system. The formula for this calculation is known as the Born rule. For example, a quantum particle like an electron can be described by a quantum state that associates to each point in space a complex number called a probability amplitude. Applying the Born rule to these amplitudes gives the probabilities that the electron will be found in one region or another when an experiment is performed to locate it. This is the best the theory can do; it cannot say for certain where the electron will be found. The same quantum state can also be used to make a prediction of how the electro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Fourier Transform
In quantum computing, the quantum Fourier transform (QFT) is a linear transformation on qubit, quantum bits, and is the quantum analogue of the discrete Fourier transform. The quantum Fourier transform is a part of many quantum algorithms, notably Shor's algorithm for factoring and computing the discrete logarithm, the quantum phase estimation algorithm for estimating the eigenvalues of a unitary operator, and algorithms for the hidden subgroup problem. The quantum Fourier transform was discovered by Don Coppersmith. With small modifications to the QFT, it can also be used for performing fast Integer (computer science), integer arithmetic operations such as addition and multiplication. The quantum Fourier transform can be performed efficiently on a quantum computer with a decomposition into the product of simpler unitary matrix, unitary matrices. The discrete Fourier transform on 2^n amplitudes can be implemented as a quantum circuit consisting of only O(n^2) Hadamard gates and Qu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hadamard Transform
The Hadamard transform (also known as the Walsh–Hadamard transform, Hadamard–Rademacher–Walsh transform, Walsh transform, or Walsh–Fourier transform) is an example of a generalized class of Fourier transforms. It performs an orthogonal, symmetric, involutive, linear operation on real numbers (or complex, or hypercomplex numbers, although the Hadamard matrices themselves are purely real). The Hadamard transform can be regarded as being built out of size-2 discrete Fourier transforms (DFTs), and is in fact equivalent to a multidimensional DFT of size . It decomposes an arbitrary input vector into a superposition of Walsh functions. The transform is named for the French mathematician Jacques Hadamard (), the German-American mathematician Hans Rademacher, and the American mathematician Joseph L. Walsh. Definition The Hadamard transform ''H''''m'' is a 2''m'' × 2''m'' matrix, the Hadamard matrix (scaled by a normalization factor), that transforms 2''m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Logic Gate
In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate (or simply quantum gate) is a basic quantum circuit operating on a small number of qubits. Quantum logic gates are the building blocks of quantum circuits, like classical logic gates are for conventional digital circuits. Unlike many classical logic gates, quantum logic gates are reversible. It is possible to perform classical computing using only reversible gates. For example, the reversible Toffoli gate can implement all Boolean functions, often at the cost of having to use ancilla bits. The Toffoli gate has a direct quantum equivalent, showing that quantum circuits can perform all operations performed by classical circuits. Quantum gates are unitary operators, and are described as unitary matrices relative to some orthonormal basis. Usually the ''computational basis'' is used, which unless comparing it with something, just means that for a ''d''-level quantum system ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
With High Probability
In mathematics, an event that occurs with high probability (often shortened to w.h.p. or WHP) is one whose probability depends on a certain number ''n'' and goes to 1 as ''n'' goes to infinity, i.e. the probability of the event occurring can be made as close to 1 as desired by making ''n'' big enough. Applications The term WHP is especially used in computer science, in the analysis of probabilistic algorithms. For example, consider a certain probabilistic algorithm on a graph with ''n'' nodes. If the probability that the algorithm returns the correct answer is 1-1/n, then when the number of nodes is very large, the algorithm is correct with a probability that is very near 1. This fact is expressed shortly by saying that the algorithm is correct WHP. Some examples where this term is used are: * Miller–Rabin primality test: a probabilistic algorithm for testing whether a given number ''n'' is prime or composite. If ''n'' is composite, the test will detect ''n'' as composite WHP. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Qubit
In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, one of the simplest quantum systems displaying the peculiarity of quantum mechanics. Examples include the spin of the electron in which the two levels can be taken as spin up and spin down; or the polarization of a single photon in which the two spin states (left-handed and the right-handed circular polarization) can also be measured as horizontal and vertical linear polarization. In a classical system, a bit would have to be in one state or the other. However, quantum mechanics allows the qubit to be in a coherent superposition of multiple states simultaneously, a property that is fundamental to quantum mechanics and quantum computing. Etymology The coining of the term ''qubit'' is attributed to Benjamin Schumacher. In the acknow ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Algorithm
In quantum computing, a quantum algorithm is an algorithm that runs on a realistic model of quantum computation, the most commonly used model being the quantum circuit model of computation. A classical (or non-quantum) algorithm is a finite sequence of instructions, or a step-by-step procedure for solving a problem, where each step or instruction can be performed on a classical computer. Similarly, a quantum algorithm is a step-by-step procedure, where each of the steps can be performed on a quantum computer. Although all classical algorithms can also be performed on a quantum computer, the term quantum algorithm is generally reserved for algorithms that seem inherently quantum, or use some essential feature of quantum computation such as quantum superposition or quantum entanglement. Problems that are undecidable using classical computers remain undecidable using quantum computers. What makes quantum algorithms interesting is that they might be able to solve some problems fa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |