Peter W. Milonni
   HOME
*





Peter W. Milonni
Peter Walden Milonni (born 5 May 1947) is an American theoretical physicist who deals with quantum optics, laser physics, quantum electrodynamics and the Casimir effect. Milonni earned his PhD in 1974 at the University of Rochester. He then worked at the Air Force Weapons Laboratory from 1974 to 1977, then working at PerkinElmer from 1977 to 1980. In 1980 he became Professor of Physics at the University of Arkansas; From 1986 to 1994 he was at the Los Alamos National Laboratory, where he became a fellow of the laboratory from 1994 onwards. He then had a research professorship at the University of Rochester. He is in on editorial boards of ''Progress in Optics'', ''Contemporary Physics'', ''Advances in Optics & Photonics'' and ''Physical Review Letters''. Milonni is also author of several textbooks and monographs including '' The Quantum Vacuum: An Introduction to Quantum Electrodynamics.'' In 2008 he received the Max Born Award The Max Born Award is given by the Optical Soci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." Physics is one of the most fundamental scientific disciplines, with its main goal being to understand how the universe behaves. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Optics
Quantum optics is a branch of atomic, molecular, and optical physics dealing with how individual quanta of light, known as photons, interact with atoms and molecules. It includes the study of the particle-like properties of photons. Photons have been used to test many of the counter-intuitive predictions of quantum mechanics, such as entanglement and teleportation, and are a useful resource for quantum information processing. History Light propagating in a restricted volume of space has its energy and momentum quantized according to an integer number of particles known as photons. Quantum optics studies the nature and effects of light as quantized photons. The first major development leading to that understanding was the correct modeling of the blackbody radiation spectrum by Max Planck in 1899 under the hypothesis of light being emitted in discrete units of energy. The photoelectric effect was further evidence of this quantization as explained by Albert Einstein in a 1905 paper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Van Der Waals Force
In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and therefore more susceptible to disturbance. The van der Waals force quickly vanishes at longer distances between interacting molecules. Named after Dutch physicist Johannes Diderik van der Waals, the van der Waals force plays a fundamental role in fields as diverse as supramolecular chemistry, structural biology, polymer science, nanotechnology, surface science, and condensed matter physics. It also underlies many properties of organic compounds and molecular solids, including their solubility in polar and non-polar media. If no other force is present, the distance between atoms at which the force becomes repulsive rather than attractive as the atoms approach one another is called the van der Waals contact distance; this phenomenon resul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unruh Effect
The Unruh effect (also known as the Fulling–Davies–Unruh effect) is a kinematic prediction of quantum field theory that an accelerating observer will observe a thermal bath, like blackbody radiation, whereas an inertial observer would observe none. In other words, the background appears to be warm from an accelerating reference frame; in layman's terms, an accelerating thermometer (like one being waved around) in empty space, removing any other contribution to its temperature, will record a non-zero temperature, just from its acceleration. Heuristically, for a uniformly accelerating observer, the ground state of an inertial observer is seen as a mixed state in thermodynamic equilibrium with a non-zero temperature bath. The Unruh effect was first described by Stephen Fulling in 1973, Paul Davies in 1975 and W. G. Unruh in 1976. It is currently not clear whether the Unruh effect has actually been observed, since the claimed observations are disputed. There is also some doub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stochastic Electrodynamics
Stochastic electrodynamics (SED) is a variant of classical electrodynamics (CED) of theoretical physics. SED consists of a set of controversial theories that posit the existence of a classical Lorentz invariant radiation field having statistical properties similar to that of the electromagnetic zero-point field (ZPF) of quantum electrodynamics (QED). Classical background field The background field is introduced as a Lorentz force in the (classical) Abraham–Lorentz–Dirac equation (see: Abraham–Lorentz–Dirac force), where the classical statistics of the electric and magnetic fields and quadratic combinations thereof are chosen to match the vacuum expectation values of the equivalent operators in QED. The field is generally represented as a discrete sum of Fourier components each with amplitude and phase that are independent classical random variables, distributed so that the statistics of the fields are isotropic and unchanged under boosts. This prescription is such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Squeezed Vacuum
In physics, a squeezed coherent state is a quantum state that is usually described by two non-commuting observables having continuous spectra of eigenvalues. Examples are position x and momentum p of a particle, and the (dimension-less) electric field in the amplitude X (phase 0) and in the mode Y (phase 90°) of a light wave (the wave's quadratures). The product of the standard deviations of two such operators obeys the uncertainty principle: :\Delta x \Delta p \geq \frac2\; and \;\Delta X \Delta Y \geq \frac4 , respectively. Trivial examples, which are in fact not squeezed, are the ground state , 0\rangle of the quantum harmonic oscillator and the family of coherent states , \alpha\rangle. These states saturate the uncertainty above and have a symmetric distribution of the operator uncertainties with \Delta x_g = \Delta p_g in "natural oscillator units" and \Delta X_g = \Delta Y_g = 1/2. (In literature different normalizations for the quadrature amplitudes are u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nonclassical Light
Nonclassical light is light that cannot be described using classical electromagnetism; its characteristics are described by the quantized electromagnetic field and quantum mechanics. The most common described forms of nonclassical light are the following: *Photon statistics of Nonclassical Light is Sub-PoissonianM. Fox, ''Quantum Optics: An Introduction'', Oxford University Press, New York, 2006 in the sense that the average number of photons in a photodetection of this kind of light shows a standard deviation that is less than the mean number of the photons. *Squeezed light exhibits reduced noise in one quadrature component. The most familiar kinds of squeezed light have either reduced amplitude noise or reduced phase noise, with increased noise of the other component. * Fock states (also called photon number states) have a well-defined number of photons (stored e.g. in a cavity), while the phase is totally undefined. Glauber–Sudarshan P representation The density matrix for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Negative Energy
Negative energy is a concept used in physics to explain the nature of certain fields, including the gravitational field and various quantum field effects. Gravitational potential energy Gravitational potential energy can be defined as being negative, but it has no physical meaning since a potential energy is always defined up to a constant. Gravity is a force deriving from a potential, hence, for an object of mass m at P in the field created by a point like object of mass M at O, \vec F_=\frac= -\vec\nabla \Phi(P) Solving this differential equation leads to \Phi(P)= \frac+ K K is often taken equal to 0 so that the potential energy at infinity is 0, then the potential energy is always negative for any distance. There is no physical need for K to be 0, it could be arbitrarily positive. Potential energy should not be confused with the field energy density or its integral, even if related. As two massive objects move towards each other, the motion accelerates under gravity ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Casimir Force
In quantum field theory, the Casimir effect is a physical force acting on the macroscopic boundaries of a confined space which arises from the quantum fluctuations of the field. It is named after the Dutch physicist Hendrik Casimir, who predicted the effect for electromagnetic systems in 1948. In the same year, Casimir together with Dirk Polder described a similar effect experienced by a neutral atom in the vicinity of a macroscopic interface which is referred to as the Casimir–Polder force. Their result is a generalization of the London–van der Waals force and includes retardation due to the finite speed of light. Since the fundamental principles leading to the London–van der Waals force, the Casimir and the Casimir–Polder force, respectively, can be formulated on the same footing, the distinction in nomenclature nowadays serves a historical purpose mostly and usually refers to the different physical setups. It was not until 1997 that a direct experiment by S. Lamorea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


An Introduction To Quantum Electrodynamics
''The Quantum Vacuum: An Introduction to Quantum Electrodynamics'' is a physics textbook authored by Peter W. Milonni in 1993. The book provides a careful and thorough treatment of zero-point energy, spontaneous emission, the Casimir, van der Waals forces, Lamb shift and anomalous magnetic moment of the electron at a level of detail not found in other introductory texts to quantum electrodynamics. The first chapter, ''Zero‐Point Energy in Early Quantum Theory'', was originally published in 1991 in the ''American Journal of Physics''. In 2008 Milonni received the Max Born Award The Max Born Award is given by the Optical Society (formerly the Optical Society of America) for "outstanding contributions to physical optics", and is named after Max Born. Recipients SourceThe Optical Society * 2022 Yuri Kivshar * 2021 Anne L ... "For exceptional contributions to the fields of theoretical optics, laser physics and quantum mechanics, and for dissemination of scientific knowledge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physical Review Letters
''Physical Review Letters'' (''PRL''), established in 1958, is a peer-reviewed, scientific journal that is published 52 times per year by the American Physical Society. As also confirmed by various measurement standards, which include the ''Journal Citation Reports'' impact factor and the journal ''h''-index proposed by Google Scholar, many physicists and other scientists consider ''Physical Review Letters'' to be one of the most prestigious journals in the field of physics. ''According to Google Scholar, PRL is the journal with the 9th journal h-index among all scientific journals'' ''PRL'' is published as a print journal, and is in electronic format, online and CD-ROM. Its focus is rapid dissemination of significant, or notable, results of fundamental research on all topics related to all fields of physics. This is accomplished by rapid publication of short reports, called "Letters". Papers are published and available electronically one article at a time. When published in s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Contemporary Physics
''Contemporary Physics'' is a peer-reviewed scientific journal publishing introductory articles on important recent developments in physics. Editorial screening and peer review is carried out by members of the editorial board. Overview ''Contemporary Physics'' has been published by Taylor & Francis since 1959 and publishes four issues per year. The subjects covered by this journal are: astrophysics, atomic and nuclear physics, chemical physics, computational physics, condensed matter physics, environmental physics, experimental physics, general physics, particle & high energy physics, plasma physics, space science, and theoretical physics. Aims The journal publishes introductory review articles on a range of recent developments in physics and intends to be of particular use to undergraduates, teachers and lecturers, and those starting postgraduate studies. ''Contemporary Physics'' also contains a major section devoted to standard book reviews and essay reviews which review ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]