Perfectly Orderable Graph
In graph theory, a perfectly orderable graph is a graph whose vertices can be ordered in such a way that a greedy coloring algorithm with that ordering optimally colors every induced subgraph of the given graph. Perfectly orderable graphs form a special case of the perfect graphs, and they include the chordal graphs, comparability graphs, and distance-hereditary graphs. However, testing whether a graph is perfectly orderable is NP-complete. Definition The greedy coloring algorithm, when applied to a given ordering of the vertices of a graph ''G'', considers the vertices of the graph in sequence and assigns each vertex its first available color, the minimum excluded value for the set of colors used by its neighbors. Different vertex orderings may lead this algorithm to use different numbers of colors. There is always an ordering that leads to an optimal coloring – this is true, for instance, of the ordering determined from an optimal coloring by sorting the vertices by their color ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tolerance Graph
In graph theory, a tolerance graph is an undirected graph in which every vertex can be represented by a closed interval and a real number called its tolerance, in such a way that two vertices are adjacent in the graph whenever their intervals overlap in a length that is at least the minimum of their two tolerances. This class of graphs was introduced in 1982 by Martin Charles Golumbic and Clyde Monma, who used them to model scheduling problems in which the tasks to be modeled can share resources for limited amounts of time. Every interval graph is a tolerance graph. The complement graph of every tolerance graph is a perfectly orderable graph, from which it follows that the tolerance graphs themselves are perfect graphs. It is NP-complete to determine whether a given graph is a tolerance graph. However, because tolerance graphs are perfect graphs, many algorithmic problems that are hard on other classes of graphs, including graph coloring and the clique problem, can be solved in poly ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Discrete Mathematics (journal)
''Discrete Mathematics'' is a biweekly peer-reviewed scientific journal in the broad area of discrete mathematics, combinatorics, graph theory, and their applications. It was established in 1971 and is published by North-Holland Publishing Company. It publishes both short notes, full length contributions, as well as survey articles. In addition, the journal publishes a number of special issues each year dedicated to a particular topic. Although originally it published articles in French and German, it now allows only English language articles. The editor-in-chief is Douglas West ( University of Illinois, Urbana). History The journal was established in 1971. The very first article it published was written by Paul Erdős, who went on to publish a total of 84 papers in the journal. Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', the journal has a 2020 impact factor of 0.87. Notable publications * The 1972 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Order (journal)
''Order'' (subtitled ''A Journal on the Theory of Ordered Sets and its Applications'') is a quarterly peer-reviewed academic journal on order theory and its applications, published by Springer Science+Business Media. It was established in 1984 by Ivan Rival (University of Calgary). From 2010 to 2018, its editor-in-chief was Dwight Duffus (Emory University). He was succeeded in 2019 by Ryan R. Martin (Iowa State University). Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', the journal has a 2017 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as i ... of 0.353. References External links * Order theory Mathematics journals Springer Science+Business Media academic journals Publications established in 198 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of Combinatorial Theory
The ''Journal of Combinatorial Theory'', Series A and Series B, are mathematical journals specializing in combinatorics and related areas. They are published by Elsevier. ''Series A'' is concerned primarily with structures, designs, and applications of combinatorics. ''Series B'' is concerned primarily with graph and matroid theory. The two series are two of the leading journals in the field and are widely known as ''JCTA'' and ''JCTB''. The journal was founded in 1966 by Frank Harary and Gian-Carlo Rota.They are acknowledged on the journals' title pages and Web sites. SeEditorial board of JCTA Editorial board of JCTB Originally there was only one journal, which was split into two parts in 1971 as the field grew rapidly. An electronic, [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cograph
In graph theory, a cograph, or complement-reducible graph, or ''P''4-free graph, is a graph that can be generated from the single-vertex graph ''K''1 by complementation and disjoint union. That is, the family of cographs is the smallest class of graphs that includes ''K''1 and is closed under complementation and disjoint union. Cographs have been discovered independently by several authors since the 1970s; early references include , , , and . They have also been called D*-graphs, hereditary Dacey graphs (after the related work of James C. Dacey Jr. on orthomodular lattices), and 2-parity graphs. They have a simple structural decomposition involving disjoint union and complement graph operations that can be represented concisely by a labeled tree, and used algorithmically to efficiently solve many problems such as finding the maximum clique that are hard on more general graph classes. Special cases of the cographs include the complete graphs, complete bipartite graphs, cluster gr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lexicographic Breadth-first Search
In computer science, lexicographic breadth-first search or Lex-BFS is a linear time algorithm for ordering the vertices of a graph. The algorithm is different from a breadth-first search, but it produces an ordering that is consistent with breadth-first search. The lexicographic breadth-first search algorithm is based on the idea of partition refinement and was first developed by . A more detailed survey of the topic is presented by . It has been used as a subroutine in other graph algorithms including the recognition of chordal graphs, and optimal coloring of distance-hereditary graphs. Background The breadth-first search algorithm is commonly defined by the following process: *Initialize a queue of graph vertices, with the starting vertex of the graph as the queue's only element. *While the queue is non-empty, remove (dequeue) a vertex from the queue, and add to the queue (enqueue) all the other vertices that can be reached by an edge from that have not already been added in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Induced Path
In the mathematical area of graph theory, an induced path in an undirected graph is a path that is an induced subgraph of . That is, it is a sequence of vertices in such that each two adjacent vertices in the sequence are connected by an edge in , and each two nonadjacent vertices in the sequence are not connected by any edge in . An induced path is sometimes called a snake, and the problem of finding long induced paths in hypercube graphs is known as the snake-in-the-box problem. Similarly, an induced cycle is a cycle that is an induced subgraph of ; induced cycles are also called chordless cycles or (when the length of the cycle is four or more) holes. An antihole is a hole in the complement of , i.e., an antihole is a complement of a hole. The length of the longest induced path in a graph has sometimes been called the detour number of the graph; for sparse graphs, having bounded detour number is equivalent to having bounded tree-depth. The induced path number of a graph ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cycle Graph
In graph theory, a cycle graph or circular graph is a graph that consists of a single cycle, or in other words, some number of vertices (at least 3, if the graph is simple) connected in a closed chain. The cycle graph with vertices is called . The number of vertices in equals the number of edges, and every vertex has degree 2; that is, every vertex has exactly two edges incident with it. Terminology There are many synonyms for "cycle graph". These include simple cycle graph and cyclic graph, although the latter term is less often used, because it can also refer to graphs which are merely not acyclic. Among graph theorists, cycle, polygon, or ''n''-gon are also often used. The term ''n''-cycle is sometimes used in other settings. A cycle with an even number of vertices is called an even cycle; a cycle with an odd number of vertices is called an odd cycle. Properties A cycle graph is: * 2-edge colorable, if and only if it has an even number of vertices * 2-regular * 2-ve ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dilworth's Theorem
In mathematics, in the areas of order theory and combinatorics, Dilworth's theorem characterizes the width of any finite partially ordered set in terms of a partition of the order into a minimum number of chains. It is named for the mathematician . An antichain in a partially ordered set is a set of elements no two of which are comparable to each other, and a chain is a set of elements every two of which are comparable. A chain decomposition is a partition of the elements of the order into disjoint chains. Dilworth's theorem states that, in any finite partially ordered set, the largest antichain has the same size as the smallest chain decomposition. Here, the size of the antichain is its number of elements, and the size of the chain decomposition is its number of chains. The width of the partial order is defined as the common size of the antichain and chain decomposition. A version of the theorem for infinite partially ordered sets states that, when there exists a decomposition i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Partially Ordered Set
In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a Set (mathematics), set. A poset consists of a set together with a binary relation indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The relation itself is called a "partial order." The word ''partial'' in the names "partial order" and "partially ordered set" is used as an indication that not every pair of elements needs to be comparable. That is, there may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus generalize total orders, in which every pair is comparable. Informal definition A partial order defines a notion of Comparability, comparison. Two elements ''x'' and ''y'' may stand in any of four mutually exclusive relationships to each other: either ''x'' ''y'', ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neighborhood (graph Theory)
In graph theory, an adjacent vertex of a vertex in a graph is a vertex that is connected to by an edge. The neighbourhood of a vertex in a graph is the subgraph of induced by all vertices adjacent to , i.e., the graph composed of the vertices adjacent to and all edges connecting vertices adjacent to . The neighbourhood is often denoted or (when the graph is unambiguous) . The same neighbourhood notation may also be used to refer to sets of adjacent vertices rather than the corresponding induced subgraphs. The neighbourhood described above does not include itself, and is more specifically the open neighbourhood of ; it is also possible to define a neighbourhood in which itself is included, called the closed neighbourhood and denoted by . When stated without any qualification, a neighbourhood is assumed to be open. Neighbourhoods may be used to represent graphs in computer algorithms, via the adjacency list and adjacency matrix representations. Neighbourhoods are also ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |