HOME
*





Park–Miller Random Number Generator
The Lehmer random number generator (named after D. H. Lehmer), sometimes also referred to as the Park–Miller random number generator (after Stephen K. Park and Keith W. Miller), is a type of linear congruential generator (LCG) that operates in multiplicative group of integers modulo n. The general formula is : X_ = a \cdot X_k \bmod m, where the modulus ''m'' is a prime number or a power of a prime number, the multiplier ''a'' is an element of high multiplicative order modulo ''m'' (e.g., a primitive root modulo ''n''), and the seed ''X'' is coprime to ''m''. Other names are multiplicative linear congruential generator (MLCG) and multiplicative congruential generator (MCG). Parameters in common use In 1988, Park and Miller suggested a Lehmer RNG with particular parameters ''m'' = 2 − 1 = 2,147,483,647 (a Mersenne prime ''M'') and ''a'' = 7 = 16,807 (a primitive root modulo ''M''), now known as MINSTD. Although MINSTD was later criticized by Marsaglia and Sullivan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Communications Of The ACM
''Communications of the ACM'' is the monthly journal of the Association for Computing Machinery (ACM). It was established in 1958, with Saul Rosen as its first managing editor. It is sent to all ACM members. Articles are intended for readers with backgrounds in all areas of computer science and information systems. The focus is on the practical implications of advances in information technology and associated management issues; ACM also publishes a variety of more theoretical journals. The magazine straddles the boundary of a science magazine, trade magazine, and a scientific journal. While the content is subject to peer review, the articles published are often summaries of research that may also be published elsewhere. Material published must be accessible and relevant to a broad readership. From 1960 onward, ''CACM'' also published algorithms, expressed in ALGOL. The collection of algorithms later became known as the Collected Algorithms of the ACM. See also * ''Journal of the A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermat Number
In mathematics, a Fermat number, named after Pierre de Fermat, who first studied them, is a positive integer of the form :F_ = 2^ + 1, where ''n'' is a non-negative integer. The first few Fermat numbers are: : 3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, ... . If 2''k'' + 1 is prime and ''k'' > 0, then ''k'' must be a power of 2, so 2''k'' + 1 is a Fermat number; such primes are called Fermat primes. , the only known Fermat primes are ''F''0 = 3, ''F''1 = 5, ''F''2 = 17, ''F''3 = 257, and ''F''4 = 65537 ; heuristics suggest that there are no more. Basic properties The Fermat numbers satisfy the following recurrence relations: : F_ = (F_-1)^+1 : F_ = F_ \cdots F_ + 2 for ''n'' ≥ 1, : F_ = F_ + 2^F_ \cdots F_ : F_ = F_^2 - 2(F_-1)^2 for ''n'' ≥ 2. Each of these relations can be proved by mathematical induction. From the second equation, we can deduce Goldbach's theorem (named after Christian Goldbach): no two Fermat numbers share a common integer factor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematics Of Computation
''Mathematics of Computation'' is a bimonthly mathematics journal focused on computational mathematics. It was established in 1943 as ''Mathematical Tables and other Aids to Computation'', obtaining its current name in 1960. Articles older than five years are available electronically free of charge. Abstracting and indexing The journal is abstracted and indexed in Mathematical Reviews, Zentralblatt MATH, Science Citation Index, CompuMath Citation Index, and Current Contents/Physical, Chemical & Earth Sciences. According to the ''Journal Citation Reports'', the journal has a 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as ... of 2.417. References External links * Delayed open access journals English-language journals Mathematics journals Publications ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ISO C
ANSI C, ISO C, and Standard C are successive standards for the C programming language published by the American National Standards Institute (ANSI) and ISO/IEC JTC 1/SC 22/WG 14 of the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC). Historically, the names referred specifically to the original and best-supported version of the standard (known as C89 or C90). Software developers writing in C are encouraged to conform to the standards, as doing so helps portability between compilers. History and outlook The first standard for C was published by ANSI. Although this document was subsequently adopted by ISO/IEC and subsequent revisions published by ISO/IEC have been adopted by ANSI, "ANSI C" is still used to refer to the standard. While some software developers use the term ISO C, others are standards-body neutral and use Standard C. Standardizing C In 1983, the American National Standards Institute formed a committe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Division Algorithm
A division algorithm is an algorithm which, given two integers N and D, computes their quotient and/or remainder, the result of Euclidean division. Some are applied by hand, while others are employed by digital circuit designs and software. Division algorithms fall into two main categories: slow division and fast division. Slow division algorithms produce one digit of the final quotient per iteration. Examples of slow division include restoring, non-performing restoring, non-restoring, and SRT division. Fast division methods start with a close approximation to the final quotient and produce twice as many digits of the final quotient on each iteration. Newton–Raphson and Goldschmidt algorithms fall into this category. Variants of these algorithms allow using fast multiplication algorithms. It results that, for large integers, the computer time needed for a division is the same, up to a constant factor, as the time needed for a multiplication, whichever multiplication algorit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


High-level Language
In computer science, a high-level programming language is a programming language with strong abstraction from the details of the computer. In contrast to low-level programming languages, it may use natural language ''elements'', be easier to use, or may automate (or even hide entirely) significant areas of computing systems (e.g. memory management), making the process of developing a program simpler and more understandable than when using a lower-level language. The amount of abstraction provided defines how "high-level" a programming language is. In the 1960s, a high-level programming language using a compiler was commonly called an ''autocode''. Examples of autocodes are COBOL and Fortran. The first high-level programming language designed for computers was Plankalkül, created by Konrad Zuse. However, it was not implemented in his time, and his original contributions were largely isolated from other developments due to World War II, aside from the language's influence on t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Signed Integer
In computer science, an integer is a datum of integral data type, a data type that represents some range of mathematical integers. Integral data types may be of different sizes and may or may not be allowed to contain negative values. Integers are commonly represented in a computer as a group of binary digits (bits). The size of the grouping varies so the set of integer sizes available varies between different types of computers. Computer hardware nearly always provides a way to represent a processor register or memory address as an integer. Value and representation The ''value'' of an item with an integral type is the mathematical integer that it corresponds to. Integral types may be ''unsigned'' (capable of representing only non-negative integers) or ''signed'' (capable of representing negative integers as well). An integer value is typically specified in the source code of a program as a sequence of digits optionally prefixed with + or −. Some programming languages allow oth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conditional (computer Programming)
In computer science, conditionals (that is, conditional statements, conditional expressions and conditional constructs,) are programming language commands for handling decisions. Specifically, conditionals perform different computations or actions depending on whether a programmer-defined boolean ''condition'' evaluates to true or false. In terms of control flow, the decision is always achieved by selectively altering the control flow based on some condition (apart from the case of branch predication). Although dynamic dispatch is not usually classified as a conditional construct, it is another way to select between alternatives at runtime. Terminology In imperative programming languages, the term "conditional statement" is usually used, whereas in functional programming, the terms "conditional expression" or "conditional construct" are preferred, because these terms all have distinct meanings. If–then(–else) The if–then construct (sometimes called if–then–els ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euler Totient
In number theory, Euler's totient function counts the positive integers up to a given integer that are relatively prime to . It is written using the Greek letter phi as \varphi(n) or \phi(n), and may also be called Euler's phi function. In other words, it is the number of integers in the range for which the greatest common divisor is equal to 1. The integers of this form are sometimes referred to as totatives of . For example, the totatives of are the six numbers 1, 2, 4, 5, 7 and 8. They are all relatively prime to 9, but the other three numbers in this range, 3, 6, and 9 are not, since and . Therefore, . As another example, since for the only integer in the range from 1 to is 1 itself, and . Euler's totient function is a multiplicative function, meaning that if two numbers and are relatively prime, then . This function gives the order of the multiplicative group of integers modulo (the group of units of the ring \Z/n\Z). It is also used for defining the RSA e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Discrete Logarithm
In mathematics, for given real numbers ''a'' and ''b'', the logarithm log''b'' ''a'' is a number ''x'' such that . Analogously, in any group ''G'', powers ''b''''k'' can be defined for all integers ''k'', and the discrete logarithm log''b'' ''a'' is an integer ''k'' such that . In number theory, the more commonly used term is index: we can write ''x'' = ind''r'' ''a'' (mod ''m'') (read "the index of ''a'' to the base ''r'' modulo ''m''") for ''r''''x'' ≡ ''a'' (mod ''m'') if ''r'' is a primitive root of ''m'' and gcd(''a'',''m'') = 1. Discrete logarithms are quickly computable in a few special cases. However, no efficient method is known for computing them in general. Several important algorithms in public-key cryptography, such as ElGamal base their security on the assumption that the discrete logarithm problem over carefully chosen groups has no efficient solution. Definition Let ''G'' be any group. Denote its group operation by mu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wichmann–Hill
Wichmann–Hill is a pseudorandom number generator proposed in 1982 by Brian Wichmann and David Hill. It consists of three linear congruential generators with different prime moduli, each of which is used to produce a uniformly distributed number between 0 and 1. These are summed, modulo 1, to produce the result. Summing three generators produces a pseudorandom sequence with cycle exceeding . Specifically, the moduli are 30269, 30307 and 30323, producing periods of 30268, 30306 and 30322. The overall period is the least common multiple of these: 30268×30306×30322/4 = . This has been confirmed by a brute-force search. Implementation The following pseudocode In computer science, pseudocode is a plain language description of the steps in an algorithm or another system. Pseudocode often uses structural conventions of a normal programming language, but is intended for human reading rather than machine re ... is for implementation on machines capable of integer arithmetic up to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]