Paley Graph
In mathematics, Paley graphs are dense undirected graphs constructed from the members of a suitable finite field by connecting pairs of elements that differ by a quadratic residue. The Paley graphs form an infinite family of conference graphs, which yield an infinite family of symmetric conference matrices. Paley graphs allow graph-theoretic tools to be applied to the number theory of quadratic residues, and have interesting properties that make them useful in graph theory more generally. Paley graphs are named after Raymond Paley. They are closely related to the Paley construction for constructing Hadamard matrices from quadratic residues . They were introduced as graphs independently by and . Sachs was interested in them for their self-complementarity properties, while Erdős and Rényi studied their symmetries. Paley digraphs are directed analogs of Paley graphs that yield antisymmetric conference matrices. They were introduced by (independently of Sachs, Erdős, and Rén ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Raymond Paley
Raymond Edward Alan Christopher Paley (7 January 1907 – 7 April 1933) was an English mathematician who made significant contributions to mathematical analysis before dying young in a skiing accident. Life Paley was born in Bournemouth, England, the son of an artillery officer who died of tuberculosis before Paley was born. He was educated at Eton College as a King's Scholar and at Trinity College, Cambridge. He became a wrangler in 1928, and with J. A. Todd, he was one of two winners of the 1930 Smith's Prize examination. He was elected a Research Fellow of Trinity College in 1930, edging out Todd for the position, and continued at Cambridge as a postgraduate student, advised by John Edensor Littlewood. After the 1931 return of G. H. Hardy to Cambridge he participated in weekly joint seminars with the other students of Hardy and Littlewood. He traveled to the US in 1932 to work with Norbert Wiener at the Massachusetts Institute of Technology and with George Pólya at P ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alfréd Rényi
Alfréd Rényi (20 March 1921 – 1 February 1970) was a Hungarian mathematician known for his work in probability theory, though he also made contributions in combinatorics, graph theory, and number theory. Life Rényi was born in Budapest to Artúr Rényi and Borbála Alexander; his father was a mechanical engineer, while his mother was the daughter of philosopher and literary critic Bernhard Alexander; his uncle was Franz Alexander, a Hungarian-American psychoanalyst and physician. He was prevented from enrolling in university in 1939 due to the anti-Jewish laws then in force, but enrolled at the University of Budapest in 1940 and finished his studies in 1944. At this point, he was drafted to forced labour service, from which he escaped. He then completed his PhD in 1947 at the University of Szeged, under the advisement of Frigyes Riesz. He married Katalin Schulhof (who used Kató Rényi as her married name), herself a mathematician, in 1946; their daughter Zsuzsanna was bor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Locally Linear Graph
In graph theory, a locally linear graph is an undirected graph in which every edge belongs to exactly one triangle. Equivalently, for each vertex of the graph, its neighbors are each adjacent to exactly one other neighbor, so the neighbors can be paired up into an induced matching. Locally linear graphs have also been called locally matched graphs. Many constructions for locally linear graphs are known. Examples of locally linear graphs include the triangular cactus graphs, the line graphs of 3-regular triangle-free graphs, and the Cartesian products of smaller locally linear graphs. Certain Kneser graphs, and certain strongly regular graphs, are also locally linear. The question of how many edges locally linear graphs can have is one of the formulations of the Ruzsa–Szemerédi problem. Although dense graphs can have a number of edges proportional to the square of the number of vertices, locally linear graphs have a smaller number of edges, falling short of the square by at l ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Circulant Graph
In graph theory, a circulant graph is an undirected graph acted on by a cyclic group of symmetries which takes any vertex to any other vertex. It is sometimes called a cyclic graph, but this term has other meanings. Equivalent definitions Circulant graphs can be described in several equivalent ways:. *The automorphism group of the graph includes a cyclic subgroup that acts transitively on the graph's vertices. In other words, the graph has a graph automorphism, which is a cyclic permutation of its vertices. *The graph has an adjacency matrix that is a circulant matrix. *The vertices of the graph can be numbered from 0 to in such a way that, if some two vertices numbered and are adjacent, then every two vertices numbered and are adjacent. *The graph can be drawn (possibly with crossings) so that its vertices lie on the corners of a regular polygon, and every rotational symmetry of the polygon is also a symmetry of the drawing. *The graph is a Cayley graph of a cyclic group ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hamiltonian Cycle
In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path. Determining whether such paths and cycles exist in graphs (the Hamiltonian path problem and Hamiltonian cycle problem) are NP-complete. Hamiltonian paths and cycles are named after William Rowan Hamilton who invented the icosian game, now also known as ''Hamilton's puzzle'', which involves finding a Hamiltonian cycle in the edge graph of the dodecahedron. Hamilton solved this problem using the icosian calculus, an algebraic structure based on roots of unity with many similarities to the quaternions (also invented by Hami ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cheeger Constant (graph Theory)
In mathematics, the Cheeger constant (also Cheeger number or isoperimetric number) of a graph is a numerical measure of whether or not a graph has a "bottleneck". The Cheeger constant as a measure of "bottleneckedness" is of great interest in many areas: for example, constructing well-connected networks of computers, card shuffling. The graph theoretical notion originated after the Cheeger isoperimetric constant of a compact Riemannian manifold. The Cheeger constant is named after the mathematician Jeff Cheeger. Definition Let be an undirected finite graph with vertex set and edge set . For a collection of vertices , let denote the collection of all edges going from a vertex in to a vertex outside of (sometimes called the ''edge boundary'' of ): :\partial A := \. Note that the edges are unordered, i.e., \ = \. The Cheeger constant of , denoted , is defined by :h(G) := \min \left\. The Cheeger constant is strictly positive if and only if is a connected graph. Intuitive ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quadratic Gauss Sum
In number theory, quadratic Gauss sums are certain finite sums of roots of unity. A quadratic Gauss sum can be interpreted as a linear combination of the values of the complex exponential function with coefficients given by a quadratic character; for a general character, one obtains a more general Gauss sum. These objects are named after Carl Friedrich Gauss, who studied them extensively and applied them to quadratic, cubic, and biquadratic reciprocity laws. Definition For an odd prime number and an integer , the quadratic Gauss sum is defined as : g(a;p) = \sum_^\zeta_p^, where \zeta_p is a primitive th root of unity, for example \zeta_p=\exp(2\pi i/p). Equivalently, : g(a;p) = \sum_^\big(1+\left(\tfrac\right)\big)\,\zeta_p^. For divisible by the expression \zeta_p^ evaluates to 1. Hence, we have : g(a;p) = p. For not divisible by , this expression reduces to : g(a;p) = \sum_^\left(\tfrac\right)\,\zeta_p^ = G(a,\left(\tfrac\right)), where : G(a,\chi)=\sum_^\chi(n)\,\ze ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symmetric Graph
In the mathematical field of graph theory, a graph is symmetric (or arc-transitive) if, given any two pairs of adjacent vertices and of , there is an automorphism :f : V(G) \rightarrow V(G) such that :f(u_1) = u_2 and f(v_1) = v_2. In other words, a graph is symmetric if its automorphism group acts transitively on ordered pairs of adjacent vertices (that is, upon edges considered as having a direction). Such a graph is sometimes also called -transitive or flag-transitive. By definition (ignoring and ), a symmetric graph without isolated vertices must also be vertex-transitive. Since the definition above maps one edge to another, a symmetric graph must also be edge-transitive. However, an edge-transitive graph need not be symmetric, since might map to , but not to . Star graphs are a simple example of being edge-transitive without being vertex-transitive or symmetric. As a further example, semi-symmetric graphs are edge-transitive and regular, but not vertex-transitiv ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Strongly Regular Graph
In graph theory, a strongly regular graph (SRG) is defined as follows. Let be a regular graph with vertices and degree . is said to be strongly regular if there are also integers and such that: * Every two adjacent vertices have common neighbours. * Every two non-adjacent vertices have common neighbours. The complement of an is also strongly regular. It is a . A strongly regular graph is a distance-regular graph with diameter 2 whenever μ is non-zero. It is a locally linear graph whenever . Etymology A strongly regular graph is denoted an srg(''v'', ''k'', λ, μ) in the literature. By convention, graphs which satisfy the definition trivially are excluded from detailed studies and lists of strongly regular graphs. These include the disjoint union of one or more equal-sized complete graphs, and their complements, the complete multipartite graphs with equal-sized independent sets. Andries Brouwer and Hendrik van Maldeghem (see #References) use an alternate but fu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q'', there could be other scenarios where ''P'' is true and ''Q'' is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pythagorean Prime
A Pythagorean prime is a prime number of the Pythagorean primes are exactly the odd prime numbers that are the sum of two squares; this characterization is Fermat's theorem on sums of two squares. Equivalently, by the Pythagorean theorem, they are the odd prime numbers p for which \sqrt p is the length of the hypotenuse of a right triangle with integer legs, and they are also the prime numbers p for which p itself is the hypotenuse of a primitive Pythagorean triangle. For instance, the number 5 is a Pythagorean prime; \sqrt5 is the hypotenuse of a right triangle with legs 1 and 2, and 5 itself is the hypotenuse of a right triangle with legs 3 and 4. Values and density The first few Pythagorean primes are By Dirichlet's theorem on arithmetic progressions, this sequence is infinite. More strongly, for each n, the numbers of Pythagorean and non-Pythagorean primes up to n are approximately equal. However, the number of Pythagorean primes up to n is frequently somewhat smaller tha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Power
In mathematics, a prime power is a positive integer which is a positive integer power of a single prime number. For example: , and are prime powers, while , and are not. The sequence of prime powers begins: 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 251, … . The prime powers are those positive integers that are divisible by exactly one prime number; in particular, the number 1 is not a prime power. Prime powers are also called primary numbers, as in the primary decomposition. Properties Algebraic properties Prime powers are powers of prime numbers. Every prime power (except powers of 2) has a primitive root; thus the multiplicative group of integers modulo ''p''''n'' (i.e. the group of units of the ring Z/''p''''n''Z) is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |