PPARGC1B
   HOME
*





PPARGC1B
Peroxisome proliferator-activated receptor gamma coactivator 1-beta is a protein that in humans is encoded by the ''PPARGC1B'' gene. See also * PPARGC1A * Peroxisome proliferator-activated receptor * Peroxisome proliferator-activated receptor alpha * Peroxisome proliferator-activated receptor delta * Peroxisome proliferator-activated receptor gamma * Transcription coregulator In molecular biology and genetics, transcription coregulators are proteins that interact with transcription factors to either activate or repress the transcription of specific genes. Transcription coregulators that activate gene transcription ar ... References Further reading * * * * * * * * * * * * * * * * * * External links * * Gene expression Transcription coregulators {{gene-5-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transcription Coregulator
In molecular biology and genetics, transcription coregulators are proteins that interact with transcription factors to either activate or repress the transcription of specific genes. Transcription coregulators that activate gene transcription are referred to as coactivators while those that repress are known as corepressors. The mechanism of action of transcription coregulators is to modify chromatin structure and thereby make the associated DNA more or less accessible to transcription. In humans several dozen to several hundred coregulators are known, depending on the level of confidence with which the characterisation of a protein as a coregulator can be made. One class of transcription coregulators modifies chromatin structure through covalent modification of histones. A second ATP dependent class modifies the conformation of chromatin. Histone acetyltransferases Nuclear DNA is normally tightly wrapped around histones rendering the DNA inaccessible to the general transc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PPARGC1A
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a protein that in humans is encoded by the ''PPARGC1A'' gene. PPARGC1A is also known as human accelerated region 20 ( HAR20). It may, therefore, have played a key role in differentiating humans from apes. PGC-1α is the master regulator of mitochondrial biogenesis. PGC-1α is also the primary regulator of liver gluconeogenesis, inducing increased gene expression for gluconeogenesis. Function PGC-1α is a super strong gene that contains two promoters, and has 4 alternative splicings. PGC-1α is a transcriptional coactivator that regulates the genes involved in energy metabolism. It is the master regulator of mitochondrial biogenesis. This protein interacts with the nuclear receptor PPAR-γ, which permits the interaction of this protein with multiple transcription factors. This protein can interact with, and regulate the activity of, cAMP response element-binding protein ( CREB) and nuclea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide. A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called peptides. The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gene
In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a basic unit of heredity and the molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and noncoding genes. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function. The transmission of genes to an organism's offspring is the basis of the inheritance of phenotypic traits. These genes make up different DNA sequences called genotypes. Genotypes along with environmental and developmental factors determine what the phenotypes will be. Most biological traits are under the influence of polygenes (many different genes) as well as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peroxisome Proliferator-activated Receptor
In the field of molecular biology, the peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptor proteins that function as transcription factors regulating the expression of genes. PPARs play essential roles in the regulation of cellular differentiation, development, and metabolism (carbohydrate, lipid, protein), and tumorigenesis of higher organisms. Nomenclature and tissue distribution Three types of PPARs have been identified: alpha, gamma, and delta (beta): * α (alpha) - expressed in liver, kidney, heart, muscle, adipose tissue, and others * β/δ (beta/delta) - expressed in many tissues, especially in brain, adipose tissue, and skin * γ (gamma) - although transcribed by the same gene, this PPAR, by way of alternative splicing, is expressed in three forms: ** γ1 - expressed in virtually all tissues, including heart, muscle, colon, kidney, pancreas, and spleen ** γ2 - expressed mainly in adipose tissue; it is 30 amino acids longer than Π...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peroxisome Proliferator-activated Receptor Alpha
Peroxisome proliferator-activated receptor alpha (PPAR-α), also known as NR1C1 (nuclear receptor subfamily 1, group C, member 1), is a nuclear receptor protein functioning as a transcription factor that in humans is encoded by the ''PPARA'' gene. Together with peroxisome proliferator-activated receptor delta and peroxisome proliferator-activated receptor gamma, PPAR-alpha is part of the subfamily of peroxisome proliferator-activated receptors. It was the first member of the PPAR family to be cloned in 1990 by Stephen Green and has been identified as the nuclear receptor for a diverse class of rodent hepatocarcinogens that causes proliferation of peroxisomes. Expression PPAR-α is primarily activated through ligand binding. Endogenous ligands include fatty acids such as arachidonic acid as well as other polyunsaturated fatty acids and various fatty acid-derived compounds such as certain members of the 15-hydroxyeicosatetraenoic acid family of arachidonic acid metabolites, e.g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Peroxisome Proliferator-activated Receptor Delta
Peroxisome proliferator-activated receptor delta (PPAR-delta), or (PPAR-beta), also known as Nuclear hormone receptor 1 (NUC1) is a nuclear receptor that in humans is encoded by the ''PPARD'' gene. This gene encodes a member of the peroxisome proliferator-activated receptor (PPAR) family. It was first identified in ''Xenopus'' in 1993. Function PPAR-delta is a nuclear hormone receptor that governs a variety of biological processes and may be involved in the development of several chronic diseases, including diabetes, obesity, atherosclerosis, and cancer. In muscle PPARD expression is increased by exercise, resulting in increased oxidative (fat-burning) capacity and an increase in type I fibers. Both PPAR-delta and AMPK agonists are regarded as exercise mimetics. In adipose tissue PPAR-β/δ increases both oxidation as well as uncoupling of oxidative phosphorylation. PPAR-delta may function as an integrator of transcription repression and nuclear receptor signaling. It act ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Peroxisome Proliferator-activated Receptor Gamma
Peroxisome proliferator- activated receptor gamma (PPAR-γ or PPARG), also known as the glitazone reverse insulin resistance receptor, or NR1C3 (nuclear receptor subfamily 1, group C, member 3) is a type II nuclear receptor functioning as a transcription factor that in humans is encoded by the ''PPARG'' gene. Tissue distribution PPARG is mainly present in adipose tissue, colon and macrophages. Two isoforms of PPARG are detected in the human and in the mouse: PPAR-γ1 (found in nearly all tissues except muscle) and PPAR-γ2 (mostly found in adipose tissue and the intestine). Gene expression This gene encodes a member of the peroxisome proliferator-activated receptor (PPAR) subfamily of nuclear receptors. PPARs form heterodimers with retinoid X receptors (RXRs) and these heterodimers regulate transcription of various genes. Three subtypes of PPARs are known: PPAR-alpha, PPAR-delta, and PPAR-gamma. The protein encoded by this gene is PPAR-gamma and is a regulator of adipocyte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gene Expression
Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. These products are often proteins, but in non-protein-coding genes such as transfer RNA (tRNA) and small nuclear RNA (snRNA), the product is a functional non-coding RNA. Gene expression is summarized in the central dogma of molecular biology first formulated by Francis Crick in 1958, further developed in his 1970 article, and expanded by the subsequent discoveries of reverse transcription and RNA replication. The process of gene expression is used by all known life— eukaryotes (including multicellular organisms), prokaryotes (bacteria and archaea), and utilized by viruses—to generate the macromolecular machinery for life. In genetics, gene expression is the most fundamental level at which the genotype gives rise to the phenot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]