P-group
   HOME
*





P-group
In mathematics, specifically group theory, given a prime number ''p'', a ''p''-group is a group in which the order of every element is a power of ''p''. That is, for each element ''g'' of a ''p''-group ''G'', there exists a nonnegative integer ''n'' such that the product of ''pn'' copies of ''g'', and not fewer, is equal to the identity element. The orders of different elements may be different powers of ''p''. Abelian ''p''-groups are also called ''p''-primary or simply primary. A finite group is a ''p''-group if and only if its order (the number of its elements) is a power of ''p''. Given a finite group ''G'', the Sylow theorems guarantee the existence of a subgroup of ''G'' of order ''pn'' for every prime power ''pn'' that divides the order of ''G''. Every finite ''p''-group is nilpotent. The remainder of this article deals with finite ''p''-groups. For an example of an infinite abelian ''p''-group, see Prüfer group, and for an example of an infinite simple ''p'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tarski Monster Group
In the area of modern algebra known as group theory, a Tarski monster group, named for Alfred Tarski, is an infinite group ''G'', such that every proper subgroup ''H'' of ''G'', other than the identity subgroup, is a cyclic group of order a fixed prime number ''p''. A Tarski monster group is necessarily simple. It was shown by Alexander Yu. Olshanskii in 1979 that Tarski groups exist, and that there is a Tarski ''p''-group for every prime ''p'' > 1075. They are a source of counterexamples to conjectures in group theory, most importantly to Burnside's problem The Burnside problem asks whether a finitely generated group in which every element has finite order must necessarily be a finite group. It was posed by William Burnside in 1902, making it one of the oldest questions in group theory and was infl ... and the von Neumann conjecture. Definition Let p be a fixed prime number. An infinite group G is called a Tarski monster group for p if every nontrivial subgroup ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE