HOME
*





P-curvature
In algebraic geometry, -curvature is an invariant of a connection on a coherent sheaf for schemes of characteristic . It is a construction similar to a usual curvature, but only exists in finite characteristic. Definition Suppose ''X/S'' is a smooth morphism of schemes of finite characteristic , ''E'' a vector bundle on ''X'', and \nabla a connection on ''E''. The -curvature of \nabla is a map \psi: E \to E\otimes \Omega^1_ defined by :\psi(e)(D) = \nabla^p_D(e) - \nabla_(e) for any derivation ''D'' of \mathcal_X over ''S''. Here we use that the ''p''th power of a derivation is still a derivation over schemes of characteristic . By the definition -curvature measures the failure of the map \operatorname_ \to \operatorname(E) to be a homomorphism of restricted Lie algebras, just like the usual curvature in differential geometry measures how far this map is from being a homomorphism of Lie algebras. See also * Grothendieck–Katz p-curvature conjecture *Restricted Lie alge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Grothendieck–Katz P-curvature Conjecture
In mathematics, the Grothendieck–Katz p-curvature conjecture is a local-global principle for linear ordinary differential equations, related to differential Galois theory and in a loose sense analogous to the result in the Chebotarev density theorem considered as the polynomial case. It is a conjecture of Alexander Grothendieck from the late 1960s, and apparently not published by him in any form. The general case remains unsolved, despite recent progress; it has been linked to geometric investigations involving algebraic foliations. Formulation In a simplest possible statement the conjecture can be stated in its essentials for a vector system written as :dv/dz = A(z)v for a vector ''v'' of size ''n'', and an ''n''×''n'' matrix ''A'' of algebraic functions with algebraic number coefficients. The question is to give a criterion for when there is a ''full set'' of algebraic function solutions, meaning a fundamental matrix (i.e. ''n'' vector solutions put into a block mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Connection (mathematics)
In geometry, the notion of a connection makes precise the idea of transporting local geometric objects, such as tangent vectors or tensors in the tangent space, along a curve or family of curves in a ''parallel'' and consistent manner. There are various kinds of connections in modern geometry, depending on what sort of data one wants to transport. For instance, an affine connection, the most elementary type of connection, gives a means for parallel transport of tangent vectors on a manifold from one point to another along a curve. An affine connection is typically given in the form of a covariant derivative, which gives a means for taking directional derivatives of vector fields, measuring the deviation of a vector field from being parallel in a given direction. Connections are of central importance in modern geometry in large part because they allow a comparison between the local geometry at one point and the local geometry at another point. Differential geometry embraces severa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Connection (mathematics)
In geometry, the notion of a connection makes precise the idea of transporting local geometric objects, such as tangent vectors or tensors in the tangent space, along a curve or family of curves in a ''parallel'' and consistent manner. There are various kinds of connections in modern geometry, depending on what sort of data one wants to transport. For instance, an affine connection, the most elementary type of connection, gives a means for parallel transport of tangent vectors on a manifold from one point to another along a curve. An affine connection is typically given in the form of a covariant derivative, which gives a means for taking directional derivatives of vector fields, measuring the deviation of a vector field from being parallel in a given direction. Connections are of central importance in modern geometry in large part because they allow a comparison between the local geometry at one point and the local geometry at another point. Differential geometry embraces severa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coherent Sheaf
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information. Coherent sheaves can be seen as a generalization of vector bundles. Unlike vector bundles, they form an abelian category, and so they are closed under operations such as taking kernels, images, and cokernels. The quasi-coherent sheaves are a generalization of coherent sheaves and include the locally free sheaves of infinite rank. Coherent sheaf cohomology is a powerful technique, in particular for studying the sections of a given coherent sheaf. Definitions A quasi-coherent sheaf on a ringed space (X, \mathcal O_X) is a sheaf \mathcal F of \mathcal O_X- modules which has a local presentation, that is, every point in X has an open neighborhood U in which there is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Scheme (mathematics)
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations ''x'' = 0 and ''x''2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise "Éléments de géométrie algébrique"; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem. Formally, a scheme is a topological space together with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Curvature Tensor
In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor (after Bernhard Riemann and Elwin Bruno Christoffel) is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold (i.e., it is a tensor field). It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is ''flat'', i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection. It is a central mathematical tool in the theory of general relativity, the modern theory of gravity, and the curvature of spacetime is in principle observable via the geodesic deviation equation. The curvature tensor represents the tidal force experienced by a rigid body moving ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Smooth Morphism
In algebraic geometry, a morphism f:X \to S between schemes is said to be smooth if *(i) it is locally of finite presentation *(ii) it is flat, and *(iii) for every geometric point \overline \to S the fiber X_ = X \times_S is regular. (iii) means that each geometric fiber of ''f'' is a nonsingular variety (if it is separated). Thus, intuitively speaking, a smooth morphism gives a flat family of nonsingular varieties. If ''S'' is the spectrum of an algebraically closed field and ''f'' is of finite type, then one recovers the definition of a nonsingular variety. Equivalent definitions There are many equivalent definitions of a smooth morphism. Let f: X \to S be locally of finite presentation. Then the following are equivalent. # ''f'' is smooth. # ''f'' is formally smooth (see below). # ''f'' is flat and the sheaf of relative differentials \Omega_ is locally free of rank equal to the relative dimension of X/S. # For any x \in X, there exists a neighborhood \operatornameB of x ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic (algebra)
In mathematics, the characteristic of a ring , often denoted , is defined to be the smallest number of times one must use the ring's multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, is the smallest positive number such that: :\underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent of the ring's additive group, that is, the smallest positive integer such that: :\underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). Some authors do not include the multiplicative identity element in their requirements for a ring (see Multiplicative identity and t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Freshman's Dream
The freshman's dream is a name sometimes given to the erroneous equation (x+y)^n=x^n+y^n, where n is a real number (usually a positive integer greater than 1) and x,y are nonzero real numbers. Beginning students commonly make this error in computing the power of a sum of real numbers, falsely assuming powers distribute over sums. When ''n'' = 2, it is easy to see why this is incorrect: (''x'' + ''y'')2 can be correctly computed as ''x''2 + 2''xy'' + ''y''2 using distributivity (commonly known by students as the FOIL method). For larger positive integer values of ''n'', the correct result is given by the binomial theorem. The name "freshman's dream" also sometimes refers to the theorem that says that for a prime number ''p'', if ''x'' and ''y'' are members of a commutative ring of characteristic ''p'', then (''x'' + ''y'')''p'' = ''x''''p'' + ''y''''p''. In this more exotic type of arithmetic, the "mistake" actually ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Restricted Lie Algebra
In mathematics, a restricted Lie algebra is a Lie algebra together with an additional "''p'' operation." Definition Let ''L'' be a Lie algebra over a field ''k'' of characteristic ''p>0''. A ''p'' operation on ''L'' is a map X \mapsto X^ satisfying * \mathrm(X^) = \mathrm(X)^p for all X \in L, * (tX)^ = t^pX^ for all t \in k, X \in L, * (X+Y)^ = X^ + Y^ + \sum_^ \frac, for all X,Y \in L, where s_i(X,Y) is the coefficient of t^ in the formal expression \mathrm(tX+Y)^(X). If the characteristic of ''k'' is 0, then ''L'' is a restricted Lie algebra where the ''p'' operation is the identity map. Examples For any associative algebra ''A'' defined over a field of characteristic ''p'', the bracket operation ,Y:= XY-YX and ''p'' operation X^ := X^p make ''A'' into a restricted Lie algebra \mathrm(A). Let ''G'' be an algebraic group over a field k of characteristic ''p'', and \mathrm(G) be the Zariski tangent space at the identity element of ''G''. Each element of \mathrm(G) uniquely def ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable manifolds. A geometric structure is one which defines some notion of size, distance, shape, volume, or other rigidifying st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]