Outline Of Category Theory
The following outline is provided as an overview of and guide to category theory, the area of study in mathematics that examines in an abstract way the properties of particular mathematical concepts, by formalising them as collections of ''objects'' and ''arrows'' (also called morphisms, although this term also has a specific, non category-theoretical sense), where these collections satisfy certain basic conditions. Many significant areas of mathematics can be formalised as categories, and the use of category theory allows many intricate and subtle mathematical results in these fields to be stated, and proved, in a much simpler way than without the use of categories. Essence of category theory * Category – * Functor – * Natural transformation – Branches of category theory * Homological algebra – * Diagram chasing – * Topos theory – * Enriched category theory – * Higher category theory – * Categorical logic – Specific categories *Category of sets – * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Concrete Category
In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets (or sometimes to another category, ''see Relative concreteness below''). This functor makes it possible to think of the objects of the category as sets with additional structure, and of its morphisms as structure-preserving functions. Many important categories have obvious interpretations as concrete categories, for example the category of topological spaces and the category of groups, and trivially also the category of sets itself. On the other hand, the homotopy category of topological spaces is not concretizable, i.e. it does not admit a faithful functor to the category of sets. A concrete category, when defined without reference to the notion of a category, consists of a class of ''objects'', each equipped with an ''underlying set''; and for any two objects ''A'' and ''B'' a set of functions, called ''morphisms'', from the underlying set of ''A'' to the underly ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Of Medial Magmas
In mathematics, the category of medial magmas, also known as the medial category, and denoted Med, is the category whose objects are medial magmas (that is, sets with a medial binary operation), and whose morphisms are magma homomorphisms (which are equivalent to homomorphisms in the sense of universal algebra). The category Med has direct products, so the concept of a medial magma object (internal binary operation) makes sense. As a result, Med has all its objects as ''medial objects'', and this characterizes it. There is an inclusion functor from Set to Med as trivial magmas, with operations being the ''right'' projections : (''x'', ''y'') → ''y''. An injective endomorphism can be extended to an automorphism of a magma extension—the colimit of the constant sequence of the endomorphism. See also * Eckmann–Hilton argument In mathematics, the Eckmann–Hilton argument (or Eckmann–Hilton principle or Eckmann–Hilton theorem) is an argument about two unital magm ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Of Magmas
In abstract algebra, a magma, binar, or, rarely, groupoid is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation that must be closed by definition. No other properties are imposed. History and terminology The term ''groupoid'' was introduced in 1927 by Heinrich Brandt describing his Brandt groupoid (translated from the German ). The term was then appropriated by B. A. Hausmann and Øystein Ore (1937) in the sense (of a set with a binary operation) used in this article. In a couple of reviews of subsequent papers in Zentralblatt, Brandt strongly disagreed with this overloading of terminology. The Brandt groupoid is a groupoid in the sense used in category theory, but not in the sense used by Hausmann and Ore. Nevertheless, influential books in semigroup theory, including Clifford and Preston (1961) and Howie (1995) use groupoid in the sense of Hausmann and Ore. Hollings (2014) writes that the term ''groupoid' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Of Rings
In mathematics, the category of rings, denoted by Ring, is the category whose objects are rings (with identity) and whose morphisms are ring homomorphisms (that preserve the identity). Like many categories in mathematics, the category of rings is large, meaning that the class of all rings is proper. As a concrete category The category Ring is a concrete category meaning that the objects are sets with additional structure (addition and multiplication) and the morphisms are functions that preserve this structure. There is a natural forgetful functor :''U'' : Ring → Set for the category of rings to the category of sets which sends each ring to its underlying set (thus "forgetting" the operations of addition and multiplication). This functor has a left adjoint :''F'' : Set → Ring which assigns to each set ''X'' the free ring generated by ''X''. One can also view the category of rings as a concrete category over Ab (the category of abelian groups) or over Mon (the category of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Of Abelian Groups
In mathematics, the category Ab has the abelian groups as objects and group homomorphisms as morphisms. This is the prototype of an abelian category: indeed, every small abelian category can be embedded in Ab. Properties The zero object of Ab is the trivial group which consists only of its neutral element. The monomorphisms in Ab are the injective group homomorphisms, the epimorphisms are the surjective group homomorphisms, and the isomorphisms are the bijective group homomorphisms. Ab is a full subcategory of Grp, the category of ''all'' groups. The main difference between Ab and Grp is that the sum of two homomorphisms ''f'' and ''g'' between abelian groups is again a group homomorphism: :(''f''+''g'')(''x''+''y'') = ''f''(''x''+''y'') + ''g''(''x''+''y'') = ''f''(''x'') + ''f''(''y'') + ''g''(''x'') + ''g''(''y'') : = ''f''(''x'') + ''g''(''x'') + ''f''(''y'') + ''g''(''y'') = (''f''+''g'')(''x'') + (''f''+''g'')(''y'') The third e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Of Groups
In mathematics, the category Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a concrete category. The study of this category is known as group theory. Relation to other categories There are two forgetful functors from Grp, M: Grp → Mon from groups to monoids and U: Grp → Set from groups to sets. M has two adjoints: one right, I: Mon→Grp, and one left, K: Mon→Grp. I: Mon→Grp is the functor sending every monoid to the submonoid of invertible elements and K: Mon→Grp the functor sending every monoid to the Grothendieck group of that monoid. The forgetful functor U: Grp → Set has a left adjoint given by the composite KF: Set→Mon→Grp, where F is the free functor; this functor assigns to every set ''S'' the free group on ''S.'' Categorical properties The monomorphisms in Grp are precisely the injective homomorphisms, the epimorphisms are precisely the surjective homomorphisms, and the isomorphisms are precise ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Of Preordered Sets
In mathematics, the category Ord has preordered sets as objects and order-preserving functions as morphisms. This is a category because the composition of two order-preserving functions is order preserving and the identity map is order preserving. The monomorphisms in Ord are the injective order-preserving functions. The empty set (considered as a preordered set) is the initial object of Ord, and the terminal objects are precisely the singleton preordered sets. There are thus no zero objects in Ord. The categorical product in Ord is given by the product order on the cartesian product. We have a forgetful functor Ord → Set that assigns to each preordered set the underlying set, and to each order-preserving function the underlying function. This functor is faithful, and therefore Ord is a concrete category. This functor has a left adjoint (sending every set to that set equipped with the equality relation) and a right adjoint (sending every set to that set equipped with the tota ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Of Metric Spaces
In category theory, Met is a category that has metric spaces as its objects and metric maps (continuous functions between metric spaces that do not increase any pairwise distance) as its morphisms. This is a category because the composition of two metric maps is again a metric map. It was first considered by . Arrows The monomorphisms in Met are the injective metric maps. The epimorphisms are the metric maps for which the domain of the map has a dense image in the range. The isomorphisms are the isometries, i.e. metric maps which are injective, surjective, and distance-preserving. As an example, the inclusion of the rational numbers into the real numbers is a monomorphism and an epimorphism, but it is clearly not an isomorphism; this example shows that Met is not a balanced category. Objects The empty metric space is the initial object of Met; any singleton metric space is a terminal object. Because the initial object and the terminal objects differ, there are no zero object ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Of Topological Spaces
In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again continuous, and the identity function is continuous. The study of Top and of properties of topological spaces using the techniques of category theory is known as categorical topology. N.B. Some authors use the name Top for the categories with topological manifolds, with compactly generated spaces as objects and continuous maps as morphisms or with the category of compactly generated weak Hausdorff spaces. As a concrete category Like many categories, the category Top is a concrete category, meaning its objects are sets with additional structure (i.e. topologies) and its morphisms are functions preserving this structure. There is a natural forgetful functor :''U'' : Top → Set to the category of sets which assigns to each topological spa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Of Sets And Relations
In mathematics, the category Rel has the class of sets as objects and binary relations as morphisms. A morphism (or arrow) ''R'' : ''A'' → ''B'' in this category is a relation between the sets ''A'' and ''B'', so . The composition of two relations ''R'': ''A'' → ''B'' and ''S'': ''B'' → ''C'' is given by :(''a'', ''c'') ∈ ''S'' o ''R'' ⇔ for some ''b'' ∈ ''B'', (''a'', ''b'') ∈ ''R'' and (''b'', ''c'') ∈ ''S''. Rel has also been called the "category of correspondences of sets". Properties The category Rel has the category of sets Set as a (wide) subcategory, where the arrow in Set corresponds to the relation defined by .This category is called SetRel by Rydeheard and Burstall. A morphism in Rel is a relation, and the corresponding morphism in the opposite category to Rel has arrows reversed, so it is the converse relation. Thus Rel contains its opposite and is self-dual. The involution represented by taking the converse relation provides the dagger to make R ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Of Finite Dimensional Hilbert Spaces
In mathematics, the category FdHilb has all finite-dimensional Hilbert spaces for objects and the linear transformations between them as morphisms. Properties This category * is monoidal, * possesses finite biproducts, and * is dagger compact. According to a theorem of Selinger, the category of finite-dimensional Hilbert spaces is complete in the dagger compact category. Many ideas from Hilbert spaces, such as the no-cloning theorem In physics, the no-cloning theorem states that it is impossible to create an independent and identical copy of an arbitrary unknown quantum state, a statement which has profound implications in the field of quantum computing among others. The theore ..., hold in general for dagger compact categories. See that article for additional details. References Monoidal categories Dagger categories Hilbert spaces {{categorytheory-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |