HOME
*





Ordinal Definable Set
In mathematical set theory, a set ''S'' is said to be ordinal definable if, informally, it can be defined in terms of a finite number of ordinals by a first-order formula. Ordinal definable sets were introduced by . A drawback to this informal definition is that it requires quantification over all first-order formulas, which cannot be formalized in the language of set theory. However there is a different way of stating the definition that can be so formalized. In this approach, a set ''S'' is formally defined to be ordinal definable if there is some collection of ordinals ''α''1, ..., ''α''''n'' such that S \isin V_ and S can be defined as an element of V_ by a first-order formula φ taking α2, ..., α''n'' as parameters. Here V_ denotes the set indexed by the ordinal ''α''1 in the von Neumann hierarchy. In other words, ''S'' is the unique object such that φ(''S'', α2...α''n'') holds with its quantifiers ranging over V_. The class of all ordinal definable sets is denoted O ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


V = L
The axiom of constructibility is a possible axiom for set theory in mathematics that asserts that every set is constructible. The axiom is usually written as ''V'' = ''L'', where ''V'' and ''L'' denote the von Neumann universe and the constructible universe, respectively. The axiom, first investigated by Kurt Gödel, is inconsistent with the proposition that zero sharp exists and stronger large cardinal axioms (see list of large cardinal properties). Generalizations of this axiom are explored in inner model theory. Implications The axiom of constructibility implies the axiom of choice (AC), given Zermelo–Fraenkel set theory without the axiom of choice (ZF). It also settles many natural mathematical questions that are independent of Zermelo–Fraenkel set theory with the axiom of choice (ZFC); for example, the axiom of constructibility implies the generalized continuum hypothesis, the negation of Suslin's hypothesis, and the existence of an analytical (in fact, \Delta^1_2) n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supercompact Cardinal
In set theory, a supercompact cardinal is a type of large cardinal. They display a variety of reflection properties. Formal definition If ''λ'' is any ordinal, ''κ'' is ''λ''-supercompact means that there exists an elementary embedding ''j'' from the universe ''V'' into a transitive inner model ''M'' with critical point ''κ'', ''j''(''κ'')>''λ'' and :^\lambda M\subseteq M \,. That is, ''M'' contains all of its ''λ''-sequences. Then ''κ'' is supercompact means that it is ''λ''-supercompact for all ordinals ''λ''. Alternatively, an uncountable cardinal ''κ'' is supercompact if for every ''A'' such that , ''A'', ≥ ''κ'' there exists a normal measure over 'A''sup>< ''κ'' with the additional property that every function f: \to A such that \ \in U is constant on a set in U. Here "constan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Core Model
In set theory, the core model is a definable inner model of the von Neumann universe, universe of all Set (mathematics), sets. Even though set theorists refer to "the core model", it is not a uniquely identified mathematical object. Rather, it is a class of inner models that under the right set-theoretic assumptions have very special properties, most notably covering lemma, covering properties. Intuitively, the core model is "the largest canonical inner model there is" (Ernest Schimmerling and John R. Steel) and is typically associated with a large cardinal notion. If Φ is a large cardinal notion, then the phrase "core model below Φ" refers to the definable inner model that exhibits the special properties under the assumption that there does ''not'' exist a cardinal satisfying Φ. The core model program seeks to analyze large cardinal axioms by determining the core models below them. History The first core model was Kurt Gödel's constructible universe L. Ronald Jensen proved the c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Large Cardinal
In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least α such that α=ωα). The proposition that such cardinals exist cannot be proved in the most common axiomatization of set theory, namely ZFC, and such propositions can be viewed as ways of measuring how "much", beyond ZFC, one needs to assume to be able to prove certain desired results. In other words, they can be seen, in Dana Scott's phrase, as quantifying the fact "that if you want more you have to assume more". There is a rough convention that results provable from ZFC alone may be stated without hypotheses, but that if the proof requires other assumptions (such as the existence of large cardinals), these should be stated. Whether this is simply a linguistic convention, or something more, is a controversial point among distinct philo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inner Model
In set theory, a branch of mathematical logic, an inner model for a theory ''T'' is a substructure of a model ''M'' of a set theory that is both a model for ''T'' and contains all the ordinals of ''M''. Definition Let L = \langle \in \rangle be the language of set theory. Let ''S'' be a particular set theory, for example the ZFC axioms and let ''T'' (possibly the same as ''S'') also be a theory in L. If ''M'' is a model for ''S'', and ''N'' is an L-structure such that #''N'' is a substructure of ''M'', i.e. the interpretation \in_N of \in in ''N'' is \cap N^2 #''N'' is a model for ''T'' #the domain of ''N'' is a transitive class of ''M'' #''N'' contains all ordinals of ''M'' then we say that ''N'' is an inner model of ''T'' (in ''M''). Usually ''T'' will equal (or subsume) ''S'', so that ''N'' is a model for ''S'' 'inside' the model ''M'' of ''S''. If only conditions 1 and 2 hold, ''N'' is called a standard model of ''T'' (in ''M''), a standard submodel of ''T'' (if ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Absoluteness
In mathematical logic, a formula is said to be absolute to some class of structures (also called models), if it has the same truth value in each of the members of that class. One can also speak of absoluteness of a formula ''between'' two structures, if it is absolute to some class which contains both of them.. Theorems about absoluteness typically establish relationships between the absoluteness of formulas and their syntactic form. There are two weaker forms of partial absoluteness. If the truth of a formula in each substructure ''N'' of a structure ''M'' follows from its truth in ''M'', the formula is downward absolute. If the truth of a formula in a structure ''N'' implies its truth in each structure ''M'' extending ''N'', the formula is upward absolute. Issues of absoluteness are particularly important in set theory and model theory, fields where multiple structures are considered simultaneously. In model theory, several basic results and definitions are motivated by absol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Well-order
In mathematics, a well-order (or well-ordering or well-order relation) on a set ''S'' is a total order on ''S'' with the property that every non-empty subset of ''S'' has a least element in this ordering. The set ''S'' together with the well-order relation is then called a well-ordered set. In some academic articles and textbooks these terms are instead written as wellorder, wellordered, and wellordering or well order, well ordered, and well ordering. Every non-empty well-ordered set has a least element. Every element ''s'' of a well-ordered set, except a possible greatest element, has a unique successor (next element), namely the least element of the subset of all elements greater than ''s''. There may be elements besides the least element which have no predecessor (see below for an example). A well-ordered set ''S'' contains for every subset ''T'' with an upper bound a least upper bound, namely the least element of the subset of all upper bounds of ''T'' in ''S''. If ≤ is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Axiom Of Extensionality
In axiomatic set theory and the branches of logic, mathematics, and computer science that use it, the axiom of extensionality, or axiom of extension, is one of the axioms of Zermelo–Fraenkel set theory. It says that sets having the same elements are the same set. Formal statement In the formal language of the Zermelo–Fraenkel axioms, the axiom reads: :\forall A \, \forall B \, ( \forall X \, (X \in A \iff X \in B) \implies A = B) or in words: :Given any set ''A'' and any set ''B'', if for every set ''X'', ''X'' is a member of ''A'' if and only if ''X'' is a member of ''B'', then ''A'' is equal to ''B''. :(It is not really essential that ''X'' here be a ''set'' — but in ZF, everything is. See Ur-elements below for when this is violated.) The converse, \forall A \, \forall B \, (A = B \implies \forall X \, (X \in A \iff X \in B) ), of this axiom follows from the substitution property of equality. Interpretation To understand this axiom, note that the clause i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of '' naive set theory''. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox) various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is commonly employed as a foundational ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transitive Set
In set theory, a branch of mathematics, a set A is called transitive if either of the following equivalent conditions hold: * whenever x \in A, and y \in x, then y \in A. * whenever x \in A, and x is not an urelement, then x is a subset of A. Similarly, a class M is transitive if every element of M is a subset of M. Examples Using the definition of ordinal numbers suggested by John von Neumann, ordinal numbers are defined as hereditarily transitive sets: an ordinal number is a transitive set whose members are also transitive (and thus ordinals). The class of all ordinals is a transitive class. Any of the stages V_\alpha and L_\alpha leading to the construction of the von Neumann universe V and Gödel's constructible universe L are transitive sets. The universes V and L themselves are transitive classes. This is a complete list of all finite transitive sets with up to 20 brackets: * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proper Class
Proper may refer to: Mathematics * Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact * Proper morphism, in algebraic geometry, an analogue of a proper map for algebraic varieties * Proper transfer function, a transfer function in control theory in which the degree of the numerator does not exceed the degree of the denominator * Proper equilibrium, in game theory, a refinement of the Nash equilibrium * Proper subset * Proper space * Proper complex random variable Other uses * Proper (liturgy), the part of a Christian liturgy that is specific to the date within the Liturgical Year * Proper frame, such system of reference in which object is stationary (non moving), sometimes also called a co-moving frame * Proper (heraldry), in heraldry, means depicted in natural colors * Proper Records, a UK record label * Proper (album), an album by Into It. Over It. released in 2011 * Proper (often capitaliz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]