HOME
*





Optical Scalars
In general relativity, optical scalars refer to a set of three scalar functions \ describing the propagation of a geodesic null congruence.Eric Poisson. ''A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics''. Cambridge: Cambridge University Press, 2004. Chapter 2.Hans Stephani, Dietrich Kramer, Malcolm MacCallum, Cornelius Hoenselaers, Eduard Herlt. ''Exact Solutions of Einstein's Field Equations''. Cambridge: Cambridge University Press, 2003. Chapter 6.Subrahmanyan Chandrasekhar. ''The Mathematical Theory of Black Holes''. Oxford: Oxford University Press, 1998. Section 9.(a).Jeremy Bransom Griffiths, Jiri Podolsky. ''Exact Space-Times in Einstein's General Relativity''. Cambridge: Cambridge University Press, 2009. Section 2.1.3.P Schneider, J Ehlers, E E Falco. ''Gravitational Lenses''. Berlin: Springer, 1999. Section 3.4.2. In fact, these three scalars \ can be defined for both timelike and null geodesic congruences in an identical spirit, but they are called "optica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the ' is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations. Newton's law of universal gravitation, which describes classical gravity, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass distributions. Some predictions of general relativity, however, are beyond Newton's law of universal gravitat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scalar (physics)
In physics, scalars (or scalar quantities) are physical quantities that are unaffected by changes to a vector space basis (i.e., a coordinate system transformation). Scalars are often accompanied by units of measurement, as in "10 cm". Examples of scalar quantities are mass, distance, charge, volume, time, speed, and the magnitude of physical vectors in general (such as velocity). A change of a vector space basis changes the description of a vector in terms of the basis used but does not change the vector itself, while a scalar has nothing to do with this change. In classical physics, like Newtonian mechanics, rotations and reflections preserve scalars, while in relativity, Lorentz transformations or space-time translations preserve scalars. The term "scalar" has origin in the multiplication of vectors by a unitless scalar, which is a ''uniform scaling'' transformation. Relationship with the mathematical concept A scalar in physics is also a scalar in mathematics, as an eleme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Null Geodesic
In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic. In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance). Thus, for example, the path of a planet orbiting a star is the projection of a geodesic of the curved four-dimensional (4-D) spacetime geometry around the star onto three-dimensional (3-D) space. Mathematical expression The full geodesic equation is : +\Gamma^\mu _=0\ where ''s'' is a scalar parameter of motion (e.g. the proper time), and \Gamma^\mu _ are Christoffel symbols (sometimes called the affine connection coefficients or Levi-Civita connection coefficients) symm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Congruence (general Relativity)
In general relativity, a congruence (more properly, a congruence of curves) is the set of integral curves of a (nowhere vanishing) vector field in a four-dimensional Lorentzian manifold which is interpreted physically as a model of spacetime. Often this manifold will be taken to be an exact or approximate solution to the Einstein field equation. Types of congruences Congruences generated by nowhere vanishing timelike, null, or spacelike vector fields are called ''timelike'', ''null'', or ''spacelike'' respectively. A congruence is called a ''geodesic congruence'' if it admits a tangent vector field \vec with vanishing covariant derivative, \nabla_ \vec = 0. Relation with vector fields The integral curves of the vector field are a family of ''non-intersecting'' parameterized curves which fill up the spacetime. The congruence consists of the curves themselves, without reference to a particular parameterization. Many distinct vector fields can give rise to the ''same'' congruen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Newman–Penrose Formalism
The Newman–Penrose (NP) formalism The original paper by Newman and Penrose, which introduces the formalism, and uses it to derive example results.Ezra T Newman, Roger Penrose. ''Errata: An Approach to Gravitational Radiation by a Method of Spin Coefficients''. Journal of Mathematical Physics, 1963, 4(7): 998. is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Expansion Rate Of A Null Congruence
Expansion may refer to: Arts, entertainment and media * ''L'Expansion'', a French monthly business magazine * ''Expansion'' (album), by American jazz pianist Dave Burrell, released in 2004 * ''Expansions'' (McCoy Tyner album), 1970 * ''Expansions'' (Lonnie Liston Smith album), 1975 * ''Expansión'' (Mexico), a Mexican news portal linked to CNN * Expansion (sculpture) (2004) Bronze sculpture illuminated from within * ''Expansión'' (Spanish newspaper), a Spanish economic daily newspaper published in Spain * Expansion pack in gaming, extra content for games, often simply "expansion" Science, technology, and mathematics * Expansion (geometry), stretching of geometric objects with flat sides * Expansion (model theory), in mathematical logic, a mutual converse of a reduct * Expansion card, in computing, a printed circuit board that can be inserted into an expansion slot * Expansion chamber, on a two-stroke engine, a tuned exhaust system that enhances power output * Expansion joint, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Congruence (general Relativity)
In general relativity, a congruence (more properly, a congruence of curves) is the set of integral curves of a (nowhere vanishing) vector field in a four-dimensional Lorentzian manifold which is interpreted physically as a model of spacetime. Often this manifold will be taken to be an exact or approximate solution to the Einstein field equation. Types of congruences Congruences generated by nowhere vanishing timelike, null, or spacelike vector fields are called ''timelike'', ''null'', or ''spacelike'' respectively. A congruence is called a ''geodesic congruence'' if it admits a tangent vector field \vec with vanishing covariant derivative, \nabla_ \vec = 0. Relation with vector fields The integral curves of the vector field are a family of ''non-intersecting'' parameterized curves which fill up the spacetime. The congruence consists of the curves themselves, without reference to a particular parameterization. Many distinct vector fields can give rise to the ''same'' congruen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors (which are the simplest tensors), dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system. Tensors have become important in physics because they provide a concise mathematical framework for formulating and solving physics problems in areas such as mechanics (stress, elasticity, fluid mechanics, moment of inertia, ...), electrodynamics (electromagnetic tensor, Maxwell tensor, permittivity, magnetic susceptibility, ...), general relativity ( stress–energy tensor, cur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Raychaudhuri Equation
In general relativity, the Raychaudhuri equation, or Landau–Raychaudhuri equation, is a fundamental result describing the motion of nearby bits of matter. The equation is important as a fundamental lemma for the Penrose–Hawking singularity theorems and for the study of exact solutions in general relativity, but has independent interest, since it offers a simple and general validation of our intuitive expectation that gravitation should be a universal attractive force between any two bits of mass-energy in general relativity, as it is in Newton's theory of gravitation. The equation was discovered independently by the Indian physicist Amal Kumar Raychaudhuri and the Soviet physicist Lev Landau.''The large scale structure of space-time'' by Stephen W. Hawking and G. F. R. Ellis, Cambridge University Press, 1973, p. 84, . Mathematical statement Given a timelike unit vector field \vec (which can be interpreted as a family or congruence of nonintersecting world lines via the in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]