One-shot Learning (software)
One-shot learning is an object categorization problem, found mostly in computer vision. Whereas most machine learning-based object categorization algorithms require training on hundreds or thousands of examples, one-shot learning aims to classify objects from one, or only a few, examples. The term few-shot learning is also used for these problems, especially when more than one example is needed. Motivation The ability to learn object categories from few examples, and at a rapid pace, has been demonstrated in humans. It is estimated that a child learns almost all of the 10 ~ 30 thousand object categories in the world by age six. This is due not only to the human mind's computational power, but also to its ability to synthesize and learn new object categories from existing information about different, previously learned categories. Given two examples from two object categories: one, an unknown object composed of familiar shapes, the second, an unknown, amorphous shape; it is much ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Object Categorization Problem
In computer vision, the problem of object categorization from image search is the problem of training a classifier to recognize categories of objects, using only the images retrieved automatically with an Internet search engine. Ideally, automatic image collection would allow classifiers to be trained with nothing but the category names as input. This problem is closely related to that of content-based image retrieval (CBIR), where the goal is to return better image search results rather than training a classifier for image recognition. Traditionally, classifiers are trained using sets of images that are labeled by hand. Collecting such a set of images is often a very time-consuming and laborious process. The use of Internet search engines to automate the process of acquiring large sets of labeled images has been described as a potential way of greatly facilitating computer vision research. Challenges Unrelated images One problem with using Internet image search results as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Normal Distribution
In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu is the mean or expectation of the distribution (and also its median and mode), while the parameter \sigma is its standard deviation. The variance of the distribution is \sigma^2. A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known. Their importance is partly due to the central limit theorem. It states that, under some conditions, the average of many samples (observations) of a random variable with finite mean and variance is itself a random variable—whose distribution converges to a normal dist ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
GPT-2
Generative Pre-trained Transformer 2 (GPT-2) is an open-source artificial intelligence created by OpenAI in February 2019. GPT-2 translates text, answers questions, summarizes passages, and generates text output on a level that, while sometimes indistinguishable from that of humans, can become repetitive or nonsensical when generating long passages. It is a general-purpose learner; it was not specifically trained to do any of these tasks, and its ability to perform them is an extension of its general ability to accurately synthesize the next item in an arbitrary sequence. GPT-2 was created as a "direct scale-up" of OpenAI's 2018 GPT model, with a ten-fold increase in both its parameter count and the size of its training dataset. The GPT architecture implements a deep neural network, specifically a transformer model, which uses attention in place of previous recurrence- and convolution-based architectures. Attention mechanisms allow the model to selectively focus on segments ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Language Model
A language model is a probability distribution over sequences of words. Given any sequence of words of length , a language model assigns a probability P(w_1,\ldots,w_m) to the whole sequence. Language models generate probabilities by training on text corpora in one or many languages. Given that languages can be used to express an infinite variety of valid sentences (the property of digital infinity), language modeling faces the problem of assigning non-zero probabilities to linguistically valid sequences that may never be encountered in the training data. Several modelling approaches have been designed to surmount this problem, such as applying the Markov assumption or using neural architectures such as recurrent neural networks or transformers. Language models are useful for a variety of problems in computational linguistics; from initial applications in speech recognition to ensure nonsensical (i.e. low-probability) word sequences are not predicted, to wider use in machine tran ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hausdorff Distance
In mathematics, the Hausdorff distance, or Hausdorff metric, also called Pompeiu–Hausdorff distance, measures how far two subsets of a metric space are from each other. It turns the set of non-empty compact subsets of a metric space into a metric space in its own right. It is named after Felix Hausdorff and Dimitrie Pompeiu. Informally, two sets are close in the Hausdorff distance if every point of either set is close to some point of the other set. The Hausdorff distance is the longest distance you can be forced to travel by an adversary who chooses a point in one of the two sets, from where you then must travel to the other set. In other words, it is the greatest of all the distances from a point in one set to the closest point in the other set. This distance was first introduced by Hausdorff in his book '' Grundzüge der Mengenlehre'', first published in 1914, although a very close relative appeared in the doctoral thesis of Maurice Fréchet in 1906, in his study of the spac ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nearest Neighbor Algorithm
The nearest neighbour algorithm was one of the first algorithms used to solve the travelling salesman problem approximately. In that problem, the salesman starts at a random city and repeatedly visits the nearest city until all have been visited. The algorithm quickly yields a short tour, but usually not the optimal one. Algorithm These are the steps of the algorithm: # Initialize all vertices as unvisited. # Select an arbitrary vertex, set it as the current vertex u. Mark u as visited. # Find out the shortest edge connecting the current vertex u and an unvisited vertex v. # Set v as the current vertex u. Mark v as visited. # If all the vertices in the domain are visited, then terminate. Else, go to step 3. The sequence of the visited vertices is the output of the algorithm. The nearest neighbour algorithm is easy to implement and executes quickly, but it can sometimes miss shorter routes which are easily noticed with human insight, due to its "greedy" nature. As a general gui ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
YouTube
YouTube is a global online video sharing and social media platform headquartered in San Bruno, California. It was launched on February 14, 2005, by Steve Chen, Chad Hurley, and Jawed Karim. It is owned by Google, and is the second most visited website, after Google Search. YouTube has more than 2.5 billion monthly users who collectively watch more than one billion hours of videos each day. , videos were being uploaded at a rate of more than 500 hours of content per minute. In October 2006, YouTube was bought by Google for $1.65 billion. Google's ownership of YouTube expanded the site's business model, expanding from generating revenue from advertisements alone, to offering paid content such as movies and exclusive content produced by YouTube. It also offers YouTube Premium, a paid subscription option for watching content without ads. YouTube also approved creators to participate in Google's AdSense program, which seeks to generate more revenue for both parties. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Siamese Neural Networks
A Siamese neural network (sometimes called a twin neural network) is an artificial neural network that uses the same weights while working in tandem on two different input vectors to compute comparable output vectors. Often one of the output vectors is precomputed, thus forming a baseline against which the other output vector is compared. This is similar to comparing fingerprints but can be described more technically as a distance function for locality-sensitive hashing. It is possible to build an architecture that is functionally similar to a siamese network but implements a slightly different function. This is typically used for comparing similar instances in different type sets. Uses of similarity measures where a twin network might be used are such things as recognizing handwritten checks, automatic detection of faces in camera images, and matching queries with indexed documents. The perhaps most well-known application of twin networks are face recognition, where known images ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Principal Component Analysis
Principal component analysis (PCA) is a popular technique for analyzing large datasets containing a high number of dimensions/features per observation, increasing the interpretability of data while preserving the maximum amount of information, and enabling the visualization of multidimensional data. Formally, PCA is a statistical technique for reducing the dimensionality of a dataset. This is accomplished by linearly transforming the data into a new coordinate system where (most of) the variation in the data can be described with fewer dimensions than the initial data. Many studies use the first two principal components in order to plot the data in two dimensions and to visually identify clusters of closely related data points. Principal component analysis has applications in many fields such as population genetics, microbiome studies, and atmospheric science. The principal components of a collection of points in a real coordinate space are a sequence of p unit vectors, where the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multivariate Student Distribution
In statistics, the multivariate ''t''-distribution (or multivariate Student distribution) is a multivariate probability distribution. It is a generalization to random vectors of the Student's ''t''-distribution, which is a distribution applicable to univariate random variables. While the case of a random matrix could be treated within this structure, the matrix ''t''-distribution is distinct and makes particular use of the matrix structure. Definition One common method of construction of a multivariate ''t''-distribution, for the case of p dimensions, is based on the observation that if \mathbf y and u are independent and distributed as N(,) and \chi^2_\nu (i.e. multivariate normal and chi-squared distributions) respectively, the matrix \mathbf\, is a ''p'' × ''p'' matrix, and /\sqrt = -, then has the density : \frac\left +\frac(-)^T^(-)\right and is said to be distributed as a multivariate ''t''-distribution with parameters ,,\nu. Note that \mathbf\Sigma i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperparameter
In Bayesian statistics, a hyperparameter is a parameter of a prior distribution; the term is used to distinguish them from parameters of the model for the underlying system under analysis. For example, if one is using a beta distribution to model the distribution of the parameter ''p'' of a Bernoulli distribution, then: * ''p'' is a parameter of the underlying system (Bernoulli distribution), and * ''α'' and ''β'' are parameters of the prior distribution (beta distribution), hence ''hyper''parameters. One may take a single value for a given hyperparameter, or one can iterate and take a probability distribution on the hyperparameter itself, called a hyperprior. Purpose One often uses a prior which comes from a parametric family of probability distributions – this is done partly for explicitness (so one can write down a distribution, and choose the form by varying the hyperparameter, rather than trying to produce an arbitrary function), and partly so that one can ''vary'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Variational Bayesian Methods
Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning. They are typically used in complex statistical models consisting of observed variables (usually termed "data") as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as might be described by a graphical model. As typical in Bayesian inference, the parameters and latent variables are grouped together as "unobserved variables". Variational Bayesian methods are primarily used for two purposes: #To provide an analytical approximation to the posterior probability of the unobserved variables, in order to do statistical inference over these variables. #To derive a lower bound for the marginal likelihood (sometimes called the ''evidence'') of the observed data (i.e. the marginal probability of the data given the model, with marginalization performed over unobserve ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |