HOME
*



picture info

On Spirals
''On Spirals'' ( el, Περὶ ἑλίκων) is a treatise by Archimedes, written around 225 BC. Notably, Archimedes employed the Archimedean spiral in this book to square the circle and trisect an angle. Contents Preface Archimedes begins ''On Spirals'' with a message to Dositheus of Pelusium mentioning the death of Conon as a loss to mathematics. He then goes on to summarize the results of ''On the Sphere and Cylinder'' (Περὶ σφαίρας καὶ κυλίνδρου) and ''On Conoids and Spheroids'' (Περὶ κωνοειδέων καὶ σφαιροειδέων). He continues to state his results of ''On Spirals''. Archimedean spiral The Archimedean spiral was first studied by Conon and was later studied by Archimedes in ''On Spirals''. Archimedes was able to find various tangents to the spiral. He defines the spiral as: Trisecting an angle The construction as to how Archimedes trisected the angle is as follows: Suppose the angle ABC is to be trisected. Trisec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Archimedes
Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists in classical antiquity. Considered the greatest mathematician of ancient history, and one of the greatest of all time,* * * * * * * * * * Archimedes anticipated modern calculus and analysis by applying the concept of the infinitely small and the method of exhaustion to derive and rigorously prove a range of geometrical theorems. These include the area of a circle, the surface area and volume of a sphere, the area of an ellipse, the area under a parabola, the volume of a segment of a paraboloid of revolution, the volume of a segment of a hyperboloid of revolution, and the area of a spiral. Heath, Thomas L. 1897. ''Works of Archimedes''. Archimedes' other mathematical achievements include deriving an approximation of pi, defining and in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square The Circle
Squaring the circle is a problem in geometry first proposed in Greek mathematics. It is the challenge of constructing a square with the area of a circle by using only a finite number of steps with a compass and straightedge. The difficulty of the problem raised the question of whether specified axioms of Euclidean geometry concerning the existence of lines and circles implied the existence of such a square. In 1882, the task was proven to be impossible, as a consequence of the Lindemann–Weierstrass theorem, which proves that pi (\pi) is a transcendental number. That is, \pi is not the root of any polynomial with rational coefficients. It had been known for decades that the construction would be impossible if \pi were transcendental, but that fact was not proven until 1882. Approximate constructions with any given non-perfect accuracy exist, and many such constructions have been found. Despite the proof that it is impossible, attempts to square the circle have been common ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Trisect An Angle
Angle trisection is a classical problem of straightedge and compass construction of ancient Greek mathematics. It concerns construction of an angle equal to one third of a given arbitrary angle, using only two tools: an unmarked straightedge and a compass. Pierre Wantzel proved in 1837 that the problem, as stated, is impossible to solve for arbitrary angles. However, although there is no way to trisect an angle ''in general'' with just a compass and a straightedge, some special angles can be trisected. For example, it is relatively straightforward to trisect a right angle (that is, to construct an angle of measure 30 degrees). It is possible to trisect an arbitrary angle by using tools other than straightedge and compass. For example, neusis construction, also known to ancient Greeks, involves simultaneous sliding and rotation of a marked straightedge, which cannot be achieved with the original tools. Other techniques were developed by mathematicians over the centuries. Beca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Encyclopædia Britannica
The (Latin for "British Encyclopædia") is a general knowledge English-language encyclopaedia. It is published by Encyclopædia Britannica, Inc.; the company has existed since the 18th century, although it has changed ownership various times through the centuries. The encyclopaedia is maintained by about 100 full-time editors and more than 4,000 contributors. The 2010 version of the 15th edition, which spans 32 volumes and 32,640 pages, was the last printed edition. Since 2016, it has been published exclusively as an online encyclopaedia. Printed for 244 years, the ''Britannica'' was the longest running in-print encyclopaedia in the English language. It was first published between 1768 and 1771 in the Scottish capital of Edinburgh, as three volumes. The encyclopaedia grew in size: the second edition was 10 volumes, and by its fourth edition (1801–1810) it had expanded to 20 volumes. Its rising stature as a scholarly work helped recruit eminent con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Conon Of Samos
Conon of Samos ( el, Κόνων ὁ Σάμιος, ''Konōn ho Samios''; c. 280 – c. 220 BC) was a Greek astronomer and mathematician. He is primarily remembered for naming the constellation Coma Berenices. Life and work Conon was born on Samos, Ionia, and possibly died in Alexandria, Ptolemaic Egypt, where he was court astronomer to Ptolemy III Euergetes. He named the constellation Coma Berenices ("Berenice's Hair") after Ptolemy's wife Berenice II. She sacrificed her hair in exchange for her husband's safe return from the Third Syrian War, which began in 246 BC. When the lock of hair disappeared, Conon explained that the goddess had shown her favor by placing it in the sky. Not all Greek astronomers accepted the designation. In Ptolemy's ''Almagest'', Coma Berenices is not listed as a distinct constellation. However, Ptolemy does attribute several seasonal indications (''parapegma'') to Conon. Conon was a friend of the mathematician Archimedes whom he probably met in Alexandr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

On The Sphere And Cylinder
''On the Sphere and Cylinder'' ( el, Περὶ σφαίρας καὶ κυλίνδρου) is a work that was published by Archimedes in two volumes c. 225 BCE. It most notably details how to find the surface area of a sphere and the volume of the contained ball and the analogous values for a cylinder, and was the first to do so. Contents The principal formulae derived in ''On the Sphere and Cylinder'' are those mentioned above: the surface area of the sphere, the volume of the contained ball, and surface area and volume of the cylinder. Let r be the radius of the sphere and cylinder, and h be the height of the cylinder, with the assumption that the cylinder is a right cylinder—the side is perpendicular to both caps. In his work, Archimedes showed that the surface area of a cylinder is equal to: :A_C = 2 \pi r^2 + 2 \pi r h = 2 \pi r ( r + h ).\, and that the volume of the same is: :V_C = \pi r^2 h. \, On the sphere, he showed that the surface area is four times the area ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Archimedean Spiral
The Archimedean spiral (also known as the arithmetic spiral) is a spiral named after the 3rd-century BC Greek mathematician Archimedes. It is the locus corresponding to the locations over time of a point moving away from a fixed point with a constant speed along a line that rotates with constant angular velocity. Equivalently, in polar coordinates it can be described by the equation r = a + b\cdot\theta with real numbers and . Changing the parameter moves the centerpoint of the spiral outward from the origin (positive toward and negative toward ) essentially through a rotation of the spiral, while controls the distance between loops. From the above equation, it can thus be stated: position of particle from point of start is proportional to angle as time elapses. Archimedes described such a spiral in his book '' On Spirals''. Conon of Samos was a friend of his and Pappus states that this spiral was discovered by Conon. Derivation of general equation of spiral A p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tangents
In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More precisely, a straight line is said to be a tangent of a curve at a point if the line passes through the point on the curve and has slope , where ''f'' is the derivative of ''f''. A similar definition applies to space curves and curves in ''n''-dimensional Euclidean space. As it passes through the point where the tangent line and the curve meet, called the point of tangency, the tangent line is "going in the same direction" as the curve, and is thus the best straight-line approximation to the curve at that point. The tangent line to a point on a differentiable curve can also be thought of as a '' tangent line approximation'', the graph of the affine function that best approximates the original function at the given point. Similarly, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Archimedes Trisect Spiral
Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists in classical antiquity. Considered the greatest mathematician of ancient history, and one of the greatest of all time,* * * * * * * * * * Archimedes anticipated modern calculus and analysis by applying the concept of the infinitely small and the method of exhaustion to derive and rigorously prove a range of geometrical theorems. These include the area of a circle, the surface area and volume of a sphere, the area of an ellipse, the area under a parabola, the volume of a segment of a paraboloid of revolution, the volume of a segment of a hyperboloid of revolution, and the area of a spiral. Heath, Thomas L. 1897. ''Works of Archimedes''. Archimedes' other mathematical achievements include deriving an approximation of pi, defining and investi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Angle Trisection
Angle trisection is a classical problem of straightedge and compass construction of ancient Greek mathematics. It concerns construction of an angle equal to one third of a given arbitrary angle, using only two tools: an unmarked straightedge and a compass. Pierre Wantzel proved in 1837 that the problem, as stated, is impossible to solve for arbitrary angles. However, although there is no way to trisect an angle ''in general'' with just a compass and a straightedge, some special angles can be trisected. For example, it is relatively straightforward to trisect a right angle (that is, to construct an angle of measure 30 degrees). It is possible to trisect an arbitrary angle by using tools other than straightedge and compass. For example, neusis construction, also known to ancient Greeks, involves simultaneous sliding and rotation of a marked straightedge, which cannot be achieved with the original tools. Other techniques were developed by mathematicians over the centuries. Becaus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Archimedean Spiral Circle Squaring Triangle
Archimedean means of or pertaining to or named in honor of the Greek mathematician Archimedes and may refer to: Mathematics *Archimedean absolute value *Archimedean circle *Archimedean constant *Archimedean copula *Archimedean field *Archimedean group *Archimedean point *Archimedean property *Archimedean solid *Archimedean spiral *Archimedean tiling Other uses *Archimedean screw *Claw of Archimedes *The Archimedeans, the mathematical society of the University of Cambridge *Archimedean Dynasty ''Archimedean Dynasty'' (German: ''Schleichfahrt'', meaning silent running) was the first of the ''AquaNox'' series of computer games, developed by Massive Development and published by Blue Byte in 1996. On July 29, 2015, after years of non-ava ... * Archimedean Upper Conservatory See also * Archimedes (other) * {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Measurement Of A Circle
''Measurement of a Circle'' or ''Dimension of the Circle'' (Greek: , ''Kuklou metrēsis'') is a treatise that consists of three propositions by Archimedes, ca. 250 BCE. The treatise is only a fraction of what was a longer work. Propositions Proposition one Proposition one states: The area of any circle is equal to a right-angled triangle in which one of the sides about the right angle is equal to the radius, and the other to the circumference of the circle. Any circle with a circumference ''c'' and a radius ''r'' is equal in area with a right triangle with the two legs being ''c'' and ''r''. This proposition is proved by the method of exhaustion. Proposition two Proposition two states: The area of a circle is to the square on its diameter as 11 to 14. This proposition could not have been placed by Archimedes, for it relies on the outcome of the third proposition. Proposition three Proposition three states: The ratio of the circumference of any circle to its diameter is greater ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]