Omega Constant
The omega constant is a mathematical constant defined as the unique real number that satisfies the equation :\Omega e^\Omega = 1. It is the value of , where is Lambert's function. The name is derived from the alternate name for Lambert's function, the ''omega function''. The numerical value of is given by : . : . Properties Fixed point representation The defining identity can be expressed, for example, as :\ln \left(\tfrac \right)=\Omega. or :-\ln(\Omega)=\Omega as well as :e^= \Omega. Computation One can calculate iteratively, by starting with an initial guess , and considering the sequence :\Omega_=e^. This sequence will converge to as approaches infinity. This is because is an attractive fixed point of the function . It is much more efficient to use the iteration :\Omega_=\frac, because the function :f(x)=\frac, in addition to having the same fixed point, also has a derivative that vanishes there. This guarantees quadratic convergence; that is, the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Constant
A mathematical constant is a number whose value is fixed by an unambiguous definition, often referred to by a special symbol (e.g., an Letter (alphabet), alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. Constants arise in many areas of mathematics, with constants such as and pi, occurring in such diverse contexts as geometry, number theory, statistics, and calculus. Some constants arise naturally by a fundamental principle or intrinsic property, such as the ratio between the circumference and diameter of a circle (). Other constants are notable more for historical reasons than for their mathematical properties. The more popular constants have been studied throughout the ages and computed to many decimal places. All named mathematical constants are Definable real number, definable numbers, and usually are also computable numbers (Chaitin's constant being a significant exception). Basic mathematical constants These a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and in many other branches of mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers, sometimes called "the reals", is traditionally denoted by a bold , often using blackboard bold, . The adjective ''real'', used in the 17th century by René Descartes, distinguishes real numbers from imaginary numbers such as the square roots of . The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real numbers are called irrational numbers. Some irrational numbers (as well as all the rationals) a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lambert W Function
In mathematics, the Lambert function, also called the omega function or product logarithm, is a multivalued function, namely the Branch point, branches of the converse relation of the function , where is any complex number and is the exponential function. The function is named after Johann Heinrich Lambert, Johann Lambert, who considered a related problem in 1758. Building on Lambert's work, Leonhard Euler described the function per se in 1783. For each integer there is one branch, denoted by , which is a complex-valued function of one complex argument. is known as the principal branch. These functions have the following property: if and are any complex numbers, then : w e^ = z holds if and only if : w=W_k(z) \ \ \text k. When dealing with real numbers only, the two branches and suffice: for real numbers and the equation : y e^ = x can be solved for only if ; yields if and the two values and if . The Lambert function's branches cannot be expressed in terms o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Iterative Method
In computational mathematics, an iterative method is a Algorithm, mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the ''i''-th approximation (called an "iterate") is derived from the previous ones. A specific implementation with Algorithm#Termination, termination criteria for a given iterative method like gradient descent, hill climbing, Newton's method, or Quasi-Newton method, quasi-Newton methods like Broyden–Fletcher–Goldfarb–Shanno algorithm, BFGS, is an algorithm of an iterative method or a method of successive approximation. An iterative method is called ''Convergent series, convergent'' if the corresponding sequence converges for given initial approximations. A mathematically rigorous convergence analysis of an iterative method is usually performed; however, heuristic-based iterative methods are also common. In contrast, direct methods attempt to solve the problem by a finit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called the ''length'' of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an ''arbitrary'' index set. For example, (M, A, R, Y) is a sequence of letters with the letter "M" first and "Y" last. This sequence differs from (A, R, M, Y). Also, the sequence (1, 1, 2, 3, 5, 8), which contains the number 1 at two different positions, is a valid sequence. Sequences can be '' finite'', as in these examples, or '' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Limit Of A Sequence
As the positive integer n becomes larger and larger, the value n\times \sin\left(\tfrac1\right) becomes arbitrarily close to 1. We say that "the limit of the sequence n \times \sin\left(\tfrac1\right) equals 1." In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the \lim symbol (e.g., \lim_a_n).Courant (1961), p. 29. If such a limit exists and is finite, the sequence is called convergent. A sequence that does not converge is said to be divergent. The limit of a sequence is said to be the fundamental notion on which the whole of mathematical analysis ultimately rests. Limits can be defined in any metric space, metric or topological space, but are usually first encountered in the real numbers. History The Greek philosopher Zeno of Elea is famous for formulating Zeno's paradoxes, paradoxes that involve limiting processes. Leucippus, Democritus, Antiphon (person), Antiphon, Eudoxus of Cnidus, Eudoxus, a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fixed Point (mathematics)
In mathematics, a fixed point (sometimes shortened to fixpoint), also known as an invariant point, is a value that does not change under a given transformation (mathematics), transformation. Specifically, for function (mathematics), functions, a fixed point is an element that is mapped to itself by the function. Any set of fixed points of a transformation is also an invariant set. Fixed point of a function Formally, is a fixed point of a function if belongs to both the domain of a function, domain and the codomain of , and . In particular, cannot have any fixed point if its domain is disjoint from its codomain. If is defined on the real numbers, it corresponds, in graphical terms, to a curve in the Euclidean plane, and each fixed-point corresponds to an intersection of the curve with the line , cf. picture. For example, if is defined on the real numbers by f(x) = x^2 - 3 x + 4, then 2 is a fixed point of , because . Not all functions have fixed points: for example, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Halley's Method
In numerical analysis, Halley's method is a root-finding algorithm used for functions of one real variable with a continuous second derivative. Edmond Halley was an English mathematician and astronomer who introduced the method now called by his name. The algorithm is second in the class of Householder's methods, after Newton's method. Like the latter, it iteratively produces a sequence of approximations to the root; their rate of convergence to the root is cubic. Multidimensional versions of this method exist. Halley's method exactly finds the roots of a linear-over-linear Padé approximation to the function, in contrast to Newton's method or the Secant method which approximate the function linearly, or Muller's method which approximates the function quadratically. There is also Halley's irrational method, described below. Method Halley's method is a numerical algorithm for solving the nonlinear equation In this case, the function has to be a function of one real varia ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transcendental Number
In mathematics, a transcendental number is a real or complex number that is not algebraic: that is, not the root of a non-zero polynomial with integer (or, equivalently, rational) coefficients. The best-known transcendental numbers are and . The quality of a number being transcendental is called transcendence. Though only a few classes of transcendental numbers are known, partly because it can be extremely difficult to show that a given number is transcendental. Transcendental numbers are not rare: indeed, almost all real and complex numbers are transcendental, since the algebraic numbers form a countable set, while the set of real numbers and the set of complex numbers are both uncountable sets, and therefore larger than any countable set. All transcendental real numbers (also known as real transcendental numbers or transcendental irrational numbers) are irrational numbers, since all rational numbers are algebraic. The converse is not true: Not all irrational numbers are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lindemann–Weierstrass Theorem
In transcendental number theory, the Lindemann–Weierstrass theorem is a result that is very useful in establishing the transcendence of numbers. It states the following: In other words, the extension field \mathbb(e^, \dots, e^) has transcendence degree over \mathbb. An equivalent formulation from , is the following: This equivalence transforms a linear relation over the algebraic numbers into an algebraic relation over \mathbb by using the fact that a symmetric polynomial whose arguments are all conjugates of one another gives a rational number. The theorem is named for Ferdinand von Lindemann and Karl Weierstrass. Lindemann proved in 1882 that is transcendental for every non-zero algebraic number thereby establishing that is transcendental (see below). Weierstrass proved the above more general statement in 1885. The theorem, along with the Gelfond–Schneider theorem, is extended by Baker's theorem, and all of these would be further generalized by Schanuel's ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Darkside Communication Group
is a publishing group of Japanese Dōjinshi in Kashiwa city. The group is known in Japan for its scientific and Otaku activities. It was established in the 1990s. Their best known work is in 1996. Their monthly magazine won "Best titled book in Japan (日本タイトルだけ大賞)" in 2012. History * 1993: They started by Kana Hoshino. * 1996: They started to join the Comiket. * 1999: Their works are introduced in ""ミニコミ魂"" by Tsutomu Kushima. * 2012: Talking event produced by Junkudo book store in Ikebukuro is a commercial and entertainment district in Toshima, Tokyo, Japan. Toshima ward offices, Ikebukuro Station, and several shops, restaurants, and department stores are located within city limits. Transportation At the center of Ikebukuro is ... town. * 2014: ''Getting difficultly(入手困難)'' won the ''Strange book award(ヘンな本大賞)'' in Japan. * 2015: ''Rocket news'' (English version) wrote about them. * 2016: ''Rocket news'' (Japanese ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Constants
A mathematical constant is a number whose value is fixed by an unambiguous definition, often referred to by a special symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. Constants arise in many areas of mathematics, with constants such as and occurring in such diverse contexts as geometry, number theory, statistics, and calculus. Some constants arise naturally by a fundamental principle or intrinsic property, such as the ratio between the circumference and diameter of a circle (). Other constants are notable more for historical reasons than for their mathematical properties. The more popular constants have been studied throughout the ages and computed to many decimal places. All named mathematical constants are definable numbers, and usually are also computable numbers ( Chaitin's constant being a significant exception). Basic mathematical constants These are constants which one is likely to enco ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |