Null Semigroup
   HOME
*





Null Semigroup
In mathematics, a null semigroup (also called a zero semigroup) is a semigroup with an absorbing element, called zero, in which the product of any two elements is zero. If every element of a semigroup is a left zero then the semigroup is called a left zero semigroup; a right zero semigroup is defined analogously.M. Kilp, U. Knauer, A.V. Mikhalev, ''Monoids, Acts and Categories with Applications to Wreath Products and Graphs'', De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, , p. 19 According to Clifford and Preston, "In spite of their triviality, these semigroups arise naturally in a number of investigations." Null semigroup Let ''S'' be a semigroup with zero element 0. Then ''S'' is called a ''null semigroup'' if ''xy'' = 0 for all ''x'' and ''y'' in ''S''. Cayley table for a null semigroup Let ''S'' = be (the underlying set of) a null semigroup. Then the Cayley table for ''S'' is as given below: Left zero semigroup A semigroup in which every element i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semigroup
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy'', denotes the result of applying the semigroup operation to the ordered pair . Associativity is formally expressed as that for all ''x'', ''y'' and ''z'' in the semigroup. Semigroups may be considered a special case of magmas, where the operation is associative, or as a generalization of groups, without requiring the existence of an identity element or inverses. The closure axiom is implied by the definition of a binary operation on a set. Some authors thus omit it and specify three axioms for a group and only one axiom (associativity) for a semigroup. As in the case of groups or magmas, the semigroup operation need not be commutative, so ''x''·''y'' is not necessarily equal to ''y''·''x''; a well-known example of an operation that is as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Absorbing Element
In mathematics, an absorbing element (or annihilating element) is a special type of element of a set with respect to a binary operation on that set. The result of combining an absorbing element with any element of the set is the absorbing element itself. In semigroup theory, the absorbing element is called a zero elementM. Kilp, U. Knauer, A.V. Mikhalev pp. 14–15 because there is no risk of confusion with other notions of zero, with the notable exception: under additive notation ''zero'' may, quite naturally, denote the neutral element of a monoid. In this article "zero element" and "absorbing element" are synonymous. Definition Formally, let be a set ''S'' with a closed binary operation • on it (known as a magma). A zero element is an element ''z'' such that for all ''s'' in ''S'', . This notion can be refined to the notions of left zero, where one requires only that , and right zero, where . Absorbing elements are particularly interesting for semigroups, especially the mu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semigroup
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy'', denotes the result of applying the semigroup operation to the ordered pair . Associativity is formally expressed as that for all ''x'', ''y'' and ''z'' in the semigroup. Semigroups may be considered a special case of magmas, where the operation is associative, or as a generalization of groups, without requiring the existence of an identity element or inverses. The closure axiom is implied by the definition of a binary operation on a set. Some authors thus omit it and specify three axioms for a group and only one axiom (associativity) for a semigroup. As in the case of groups or magmas, the semigroup operation need not be commutative, so ''x''·''y'' is not necessarily equal to ''y''·''x''; a well-known example of an operation that is as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Left Zero
In mathematics, an absorbing element (or annihilating element) is a special type of element of a set with respect to a binary operation on that set. The result of combining an absorbing element with any element of the set is the absorbing element itself. In semigroup theory, the absorbing element is called a zero elementM. Kilp, U. Knauer, A.V. Mikhalev pp. 14–15 because there is no risk of confusion with other notions of zero, with the notable exception: under additive notation ''zero'' may, quite naturally, denote the neutral element of a monoid. In this article "zero element" and "absorbing element" are synonymous. Definition Formally, let be a set ''S'' with a closed binary operation • on it (known as a magma). A zero element is an element ''z'' such that for all ''s'' in ''S'', . This notion can be refined to the notions of left zero, where one requires only that , and right zero, where . Absorbing elements are particularly interesting for semigroups, especially the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cayley Table
Named after the 19th century British mathematician Arthur Cayley, a Cayley table describes the structure of a finite group by arranging all the possible products of all the group's elements in a square table reminiscent of an addition or multiplication table. Many properties of a groupsuch as whether or not it is abelian, which elements are inverses of which elements, and the size and contents of the group's centercan be discovered from its Cayley table. A simple example of a Cayley table is the one for the group under ordinary multiplication: History Cayley tables were first presented in Cayley's 1854 paper, "On The Theory of Groups, as depending on the symbolic equation ''θ'' ''n'' = 1". In that paper they were referred to simply as tables, and were merely illustrativethey came to be known as Cayley tables later on, in honour of their creator. Structure and layout Because many Cayley tables describe groups that are not abelian, the product ''ab'' with respect to t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Right Zero
In mathematics, an absorbing element (or annihilating element) is a special type of element of a set with respect to a binary operation on that set. The result of combining an absorbing element with any element of the set is the absorbing element itself. In semigroup theory, the absorbing element is called a zero elementM. Kilp, U. Knauer, A.V. Mikhalev pp. 14–15 because there is no risk of confusion with other notions of zero, with the notable exception: under additive notation ''zero'' may, quite naturally, denote the neutral element of a monoid. In this article "zero element" and "absorbing element" are synonymous. Definition Formally, let be a set ''S'' with a closed binary operation • on it (known as a magma). A zero element is an element ''z'' such that for all ''s'' in ''S'', . This notion can be refined to the notions of left zero, where one requires only that , and right zero, where . Absorbing elements are particularly interesting for semigroups, especially the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Identity Element
In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures such as groups and rings. The term ''identity element'' is often shortened to ''identity'' (as in the case of additive identity and multiplicative identity) when there is no possibility of confusion, but the identity implicitly depends on the binary operation it is associated with. Definitions Let be a set  equipped with a binary operation ∗. Then an element  of  is called a if for all  in , and a if for all  in . If is both a left identity and a right identity, then it is called a , or simply an . An identity with respect to addition is called an (often denoted as 0) and an identity with respect to multiplication is called a (often denoted as 1). These need not be ordinary additi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monoid
In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids are semigroups with identity. Such algebraic structures occur in several branches of mathematics. The functions from a set into itself form a monoid with respect to function composition. More generally, in category theory, the morphisms of an object to itself form a monoid, and, conversely, a monoid may be viewed as a category with a single object. In computer science and computer programming, the set of strings built from a given set of characters is a free monoid. Transition monoids and syntactic monoids are used in describing finite-state machines. Trace monoids and history monoids provide a foundation for process calculi and concurrent computing. In theoretical computer science, the study of monoids is fundamental for automata ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Direct Product
In mathematics, one can often define a direct product of objects already known, giving a new one. This generalizes the Cartesian product of the underlying sets, together with a suitably defined structure on the product set. More abstractly, one talks about the product in category theory, which formalizes these notions. Examples are the product of sets, groups (described below), rings, and other algebraic structures. The product of topological spaces is another instance. There is also the direct sum – in some areas this is used interchangeably, while in others it is a different concept. Examples * If we think of \R as the set of real numbers, then the direct product \R \times \R is just the Cartesian product \. * If we think of \R as the group of real numbers under addition, then the direct product \R\times \R still has \ as its underlying set. The difference between this and the preceding example is that \R \times \R is now a group, and so we have to also say how to add their ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Variety (universal Algebra)
In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to #Birkhoff's_theorem, Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphism, homomorphic images, subalgebras and Direct product#Direct product in universal algebra, (direct) products. In the context of category theory, a variety of algebras, together with its homomorphisms, forms a Category (mathematics), category; these are usually called ''finitary algebraic categories''. A ''covariety'' is the class of all F-coalgebra, coalgebraic structures of a given signature. Terminology A variety of algebras should not be confused with an algebraic variety, which means a set of solutions to a system of polynomial eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Variety Of Finite Semigroups
In mathematics, and more precisely in semigroup theory, a variety of finite semigroups is a class of semigroups having some nice algebraic properties. Those classes can be defined in two distinct ways, using either algebraic notions or topological notions. Varieties of finite monoids, varieties of finite ordered semigroups and varieties of finite ordered monoids are defined similarly. This notion is very similar to the general notion of variety in universal algebra. Definition Two equivalent definitions are now given. Algebraic definition A variety ''V'' of finite (ordered) semigroups is a class of finite (ordered) semigroups that: *is closed under division. *is closed under taking finite Cartesian products. The first condition is equivalent to stating that ''V'' is closed under taking subsemigroups and under taking quotients. The second property implies that the empty product—that is, the trivial semigroup of one element—belongs to each variety. Hence a variety is n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]