Nomarski Prism
   HOME
*



picture info

Nomarski Prism
A Nomarski prism is a modification of the Wollaston prism that is used in differential interference contrast microscopy. It is named after its inventor, Polish and naturalized-French physicist Georges Nomarski. Like the Wollaston prism, the Nomarski prism consists of two birefringent crystal wedges (e.g. quartz or calcite) cemented together at the hypotenuse (e.g. with Canada balsam). One of the wedges is identical to a conventional Wollaston wedge and has the optical axis oriented parallel to the surface of the prism. The second wedge of the prism is modified by cutting the crystal so that the optical axis is oriented obliquely with respect to the flat surface of the prism. The Nomarski modification causes the light rays to come to a focal point outside the body of the prism, and allows greater flexibility so that when setting up the microscope A microscope () is a laboratory instrument used to examine objects that are too small to be seen by the naked eye. Microsco ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nomarski Prism EN
Georges (Jerzy) Nomarski (January 6, 1919 – 1997) was a Polish physicist and optics theoretician. Creator of differential interference contrast (DIC) microscopy, the method is widely used to study live biological specimens and unstained tissues and in many languages bears his name. Biography Born in Nowy Targ, Nomarski was educated in Warsaw at the Warsaw University of Technology (known at that time as the ''Warsaw Polytechnic'') and served in the Polish resistance movement in World War II, Polish Resistance during World War II. Captured by Germany, German forces, he was a prisoner of war until March 1945. After the war when the Soviets supported communists installed their regime over Poland, Nomarski had to escape to Belgium as a political refugee. He studied there briefly before he moved to France for his permanent residence in 1947. He finished his education in France and received his diploma from l'Ecole Supérieure d'Optique Paris (Grande Ecole). In 1950, Nomarski established ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Microscope
A microscope () is a laboratory instrument used to examine objects that are too small to be seen by the naked eye. Microscopy is the science of investigating small objects and structures using a microscope. Microscopic means being invisible to the eye unless aided by a microscope. There are many types of microscopes, and they may be grouped in different ways. One way is to describe the method an instrument uses to interact with a sample and produce images, either by sending a beam of light or electrons through a sample in its optical path, by detecting photon emissions from a sample, or by scanning across and a short distance from the surface of a sample using a probe. The most common microscope (and the first to be invented) is the optical microscope, which uses lenses to refract visible light that passed through a thinly sectioned sample to produce an observable image. Other major types of microscopes are the fluorescence microscope, electron microscope (both the transmi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polarization (waves)
Polarization (also polarisation) is a property applying to transverse waves that specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. A simple example of a polarized transverse wave is vibrations traveling along a taut string ''(see image)''; for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic waves such as light and radio waves, gravitational waves, and transverse sound waves (shear waves) in solids. An electromagnetic wa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sénarmont Prism
The Sénarmont prism is a type of polariser. It is made from two prisms of a birefringent material such as calcite, usually cemented together. The Sénarmont prism is named after Henri Hureau de Sénarmont Henri Hureau de Sénarmont (6 September 1808 – 30 June 1862) was a French mineralogist and physicist. He was born in Broué, Eure-et-Loir. From 1822 to 1826, he studied at the École Polytechnique in Paris, then furthered his education at the .... It is similar to the Rochon and Wollaston prisms. In the Sénarmont prism the s-polarized ray (i.e., the ray with polarization direction perpendicular to the plane in which all rays are contained, called the plane of incidence) passes through without being deflected, while the p-polarized ray (with polarization direction in the plane of incidence) is deflected (refracted) at the internal interface into a different direction. Both rays correspond to ordinary rays (o-rays) in the first component prism, since both polarizatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rochon Prism
A Rochon prism is a type of polariser. It is made from two prisms of a birefringent material such as calcite, which are cemented together. The Rochon prism was invented by and is named after Abbé Alexis Marie Rochon. It is in many ways similar to the Wollaston prism, but one ray (the ordinary ray) passes through the prism undeviated. The Sénarmont prism is similar but transmits the s-polarized ray undeviated. In both the Rochon and the Sénarmont prisms the undeviated ray is ordinary on both sides of the interface. Rochon prisms are commercially available, but for many applications other polarisers are preferred. See also *Nomarski prism * Nicol prism *Glan–Thompson prism *Glan–Foucault prism A Glan–Foucault prism (also called a Glan–air prism) is a type of prism which is used as a polarizer. It is similar in construction to a Glan–Thompson prism, except that two right-angled calcite prisms are spaced with an air gap instead o ... * Sénarmont prism Referen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prism (optics)
An optical prism is a transparent optics, optical element with flat, polished surfaces that are designed to refraction, refract light. At least one surface must be angled — elements with two parallel surfaces are ''not'' prisms. The most familiar type of optical prism is the triangular prism, which has a triangular base and rectangular sides. Not all optical prisms are prism (geometry), geometric prisms, and not all geometric prisms would count as an optical prism. Prisms can be made from any material that is transparent to the wavelengths for which they are designed. Typical materials include glass, acrylic glass, acrylic and fluorite#Optics, fluorite. A dispersive prism can be used to break white#White light, white light up into its constituent spectral colors (the colors of the rainbow) as described in the following section. Other types of prisms noted below can be used to reflection (physics), reflect light, or to split light into components with different polarization (w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nicol Prism
A Nicol prism is a type of polarizer, an optical device made from calcite crystal used to produce and analyse plane polarized light. It is made in such a way that it eliminates one of the rays by total internal reflection, i.e. the ordinary ray is eliminated and only the extraordinary ray is transmitted through the prism. It was the first type of polarizing prism, invented in 1828 by William Nicol (1770–1851) of Edinburgh. It consists of a rhombohedral crystal of Iceland spar (a variety of calcite) that has been cut at an angle of 68° with respect to the crystal axis, cut again diagonally, and then rejoined as shown, using a layer of transparent Canada balsam as a glue. Unpolarized light ray enters through the left face of the crystal, as shown in the diagram, and is split into two orthogonally polarized, differently directed rays by the birefringence property of calcite. The ''ordinary'' ray, or ''o''-ray, experiences a refractive index of ''n''o = 1.658 in the calcite and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Glan–Thompson Prism
A Glan–Thompson prism is a type of polarizing prism similar to the Nicol and Glan–Foucault prisms. Design A Glan–Thompson prism consists of two right-angled calcite prisms that are cemented together by their long faces. The optical axes of the calcite crystals are parallel and aligned perpendicular to the plane of reflection. Birefringence splits light entering the prism into two rays, experiencing different refractive indices; the ''p''-polarized ordinary ray is totally internally reflected from the calcite–cement interface, leaving the ''s''-polarized extraordinary ray to be transmitted. The prism can therefore be used as a polarizing beam splitter. Traditionally Canada balsam was used as the cement in assembling these prisms, but this has largely been replaced by synthetic polymers. Characteristics Compared to the similar Glan–Foucault prism, the Glan–Thompson has a wider acceptance angle, but a much lower limit of maximal irradiance (due to optical damage ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Glan–Foucault Prism
A Glan–Foucault prism (also called a Glan–air prism) is a type of prism which is used as a polarizer. It is similar in construction to a Glan–Thompson prism, except that two right-angled calcite prisms are spaced with an air gap instead of being cemented together. Total internal reflection of ''p''- polarized light at the air gap means that only ''s''-polarized light is transmitted straight through the prism. Design Compared to the Glan–Thompson prism, the Glan–Foucault has a narrower acceptance angle over which it works, but because it uses an air gap rather than cement, much higher irradiances can be used without damage. The prism can thus be used with laser beams. The prism is also shorter (for a given usable aperture) than the Glan–Thompson design, and the deflection angle of the rejected beam can be made close to 90°, which is sometimes useful. Glan–Foucault prisms are not typically used as polarizing beamsplitters because while the transmitted beam is complete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Optical Axis
An optical axis is a line along which there is some degree of rotational symmetry in an optical system such as a camera lens, microscope or telescopic sight. The optical axis is an imaginary line that defines the path along which light propagates through the system, up to first approximation. For a system composed of simple lenses and mirrors, the axis passes through the center of curvature of each surface, and coincides with the axis of rotational symmetry. The optical axis is often coincident with the system's mechanical axis, but not always, as in the case of off-axis optical systems. For an optical fiber, the optical axis is along the center of the fiber core, and is also known as the ''fiber axis''. See also * Ray (optics) * Cardinal point (optics) * Antenna boresight In telecommunications and radar engineering, antenna boresight is the axis of maximum gain (maximum radiated power) of a directional antenna. For most antennas the boresight is the axis of symmetry of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Wollaston Prism
A Wollaston prism is an optical device, invented by William Hyde Wollaston, that manipulates polarized light. It separates light into two separate linearly polarized outgoing beams with orthogonal polarization. The two beams will be polarized according to the optical axis of the two right angle prisms. The Wollaston prism consists of two orthogonal prisms of birefringent material—typically a uniaxial material such as calcite Calcite is a Carbonate minerals, carbonate mineral and the most stable Polymorphism (materials science), polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on .... These prisms are cemented together on their base (traditionally with Canada balsam) to form two right triangle prisms with perpendicular optic axes. Outgoing light beams diverge from the prism as ordinary and extraordinary rays due to the differences in the indexes of refraction, with the angle of diverg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]