Nisnevich Topology
   HOME
*





Nisnevich Topology
In algebraic geometry, the Nisnevich topology, sometimes called the completely decomposed topology, is a Grothendieck topology on the category of schemes which has been used in algebraic K-theory, A¹ homotopy theory, and the theory of motives. It was originally introduced by Yevsey Nisnevich, who was motivated by the theory of adeles. Definition A morphism of schemes f:Y \to X is called a Nisnevich morphism if it is an étale morphism such that for every (possibly non-closed) point ''x'' ∈ ''X'', there exists a point ''y'' ∈ ''Y'' in the fiber such that the induced map of residue fields ''k''(''x'') → ''k''(''y'') is an isomorphism. Equivalently, ''f'' must be flat, unramified, locally of finite presentation, and for every point ''x'' ∈ ''X'', there must exist a point ''y'' in the fiber such that ''k''(''x'') → ''k''(''y'') is an isomorphism. A family of morphisms is a Nisnevich cover if each morphism in the family is étale and for every (possibly non-closed) po ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Henselization
In mathematics, a Henselian ring (or Hensel ring) is a local ring in which Hensel's lemma holds. They were introduced by , who named them after Kurt Hensel. Azumaya originally allowed Henselian rings to be non-commutative, but most authors now restrict them to be commutative. Some standard references for Hensel rings are , , and . Definitions In this article rings will be assumed to be commutative, though there is also a theory of non-commutative Henselian rings. * A local ring ''R'' with maximal ideal ''m'' is called Henselian if Hensel's lemma holds. This means that if ''P'' is a monic polynomial in ''R'' 'x'' then any factorization of its image ''P'' in (''R''/''m'') 'x''into a product of coprime monic polynomials can be lifted to a factorization in ''R'' 'x'' * A local ring is Henselian if and only if every finite ring extension is a product of local rings. * A Henselian local ring is called strictly Henselian if its residue field is separably closed. * By abuse of termin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Henselian Ring
In mathematics, a Henselian ring (or Hensel ring) is a local ring in which Hensel's lemma holds. They were introduced by , who named them after Kurt Hensel. Azumaya originally allowed Henselian rings to be non-commutative, but most authors now restrict them to be commutative. Some standard references for Hensel rings are , , and . Definitions In this article rings will be assumed to be commutative, though there is also a theory of non-commutative Henselian rings. * A local ring ''R'' with maximal ideal ''m'' is called Henselian if Hensel's lemma holds. This means that if ''P'' is a monic polynomial in ''R'' 'x'' then any factorization of its image ''P'' in (''R''/''m'') 'x''into a product of coprime monic polynomials can be lifted to a factorization in ''R'' 'x'' * A local ring is Henselian if and only if every finite ring extension is a product of local rings. * A Henselian local ring is called strictly Henselian if its residue field is separably closed. * By abuse of termino ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mixed Motives (math)
In algebraic geometry, motives (or sometimes motifs, following French usage) is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety. In the formulation of Grothendieck for smooth projective varieties, a motive is a triple (X, p, m), where ''X'' is a smooth projective variety, p: X \vdash X is an idempotent correspondence, and ''m'' an integer, however, such a triple contains almost no information outside the context of Grothendieck's category of pure motives, where a morphism from (X, p, m) to (Y, q, n) is given by a correspondence of degree n-m. A more object-focused approach is taken by Pierre Deligne in ''Le Groupe Fondamental de la Droite Projective Moins Trois Points''. In that article, a motive is a "system of realisations" – that is, a t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Presheaf With Transfers
In algebraic geometry, a presheaf with transfers is, roughly, a presheaf that, like cohomology theory, comes with pushforwards, “transfer” maps. Precisely, it is, by definition, a contravariant additive functor from the category of finite correspondences (defined below) to the category of abelian groups (in category theory, “presheaf” is another term for a contravariant functor). When a presheaf ''F'' with transfers is restricted to the subcategory of smooth separated schemes, it can be viewed as a presheaf on the category with ''extra'' maps F(Y) \to F(X), not coming from morphisms of schemes but also from finite correspondences from ''X'' to ''Y'' A presheaf ''F'' with transfers is said to be \mathbb^1-homotopy invariant if F(X) \simeq F(X \times \mathbb^1) for every ''X''. For example, Chow groups as well as motivic cohomology groups form presheaves with transfers. Finite correspondence Let X, Y be algebraic schemes (i.e., separated and of finite type over a fie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectral Sequence
In homological algebra and algebraic topology, a spectral sequence is a means of computing homology groups by taking successive approximations. Spectral sequences are a generalization of exact sequences, and since their introduction by , they have become important computational tools, particularly in algebraic topology, algebraic geometry and homological algebra. Discovery and motivation Motivated by problems in algebraic topology, Jean Leray introduced the notion of a sheaf (mathematics), sheaf and found himself faced with the problem of computing sheaf cohomology. To compute sheaf cohomology, Leray introduced a computational technique now known as the Leray spectral sequence. This gave a relation between cohomology groups of a sheaf and cohomology groups of the direct image of a sheaf, pushforward of the sheaf. The relation involved an infinite process. Leray found that the cohomology groups of the pushforward formed a natural chain complex, so that he could take the cohomolo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zariski Topology
In algebraic geometry and commutative algebra, the Zariski topology is a topology which is primarily defined by its closed sets. It is very different from topologies which are commonly used in the real or complex analysis; in particular, it is not Hausdorff. This topology was introduced primarily by Oscar Zariski and later generalized for making the set of prime ideals of a commutative ring (called the spectrum of the ring) a topological space. The Zariski topology allows tools from topology to be used to study algebraic varieties, even when the underlying field is not a topological field. This is one of the basic ideas of scheme theory, which allows one to build general algebraic varieties by gluing together affine varieties in a way similar to that in manifold theory, where manifolds are built by gluing together charts, which are open subsets of real affine spaces. The Zariski topology of an algebraic variety is the topology whose closed sets are the algebraic subsets of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Torsor
In mathematics, a principal homogeneous space, or torsor, for a group ''G'' is a homogeneous space ''X'' for ''G'' in which the stabilizer subgroup of every point is trivial. Equivalently, a principal homogeneous space for a group ''G'' is a non-empty set ''X'' on which ''G'' acts freely and transitively (meaning that, for any ''x'', ''y'' in ''X'', there exists a unique ''g'' in ''G'' such that , where · denotes the (right) action of ''G'' on ''X''). An analogous definition holds in other categories, where, for example, *''G'' is a topological group, ''X'' is a topological space and the action is continuous, *''G'' is a Lie group, ''X'' is a smooth manifold and the action is smooth, *''G'' is an algebraic group, ''X'' is an algebraic variety and the action is regular. Definition If ''G'' is nonabelian then one must distinguish between left and right torsors according to whether the action is on the left or right. In this article, we will use right actions. To state the defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jean-Pierre Serre
Jean-Pierre Serre (; born 15 September 1926) is a French mathematician who has made contributions to algebraic topology, algebraic geometry, and algebraic number theory. He was awarded the Fields Medal in 1954, the Wolf Prize in 2000 and the inaugural Abel Prize in 2003. Biography Personal life Born in Bages, Pyrénées-Orientales, France, to pharmacist parents, Serre was educated at the Lycée de Nîmes and then from 1945 to 1948 at the École Normale Supérieure in Paris. He was awarded his doctorate from the Sorbonne in 1951. From 1948 to 1954 he held positions at the Centre National de la Recherche Scientifique in Paris. In 1956 he was elected professor at the Collège de France, a position he held until his retirement in 1994. His wife, Professor Josiane Heulot-Serre, was a chemist; she also was the director of the Ecole Normale Supérieure de Jeunes Filles. Their daughter is the former French diplomat, historian and writer Claudine Monteil. The French mathematician Denis S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


étale Topology
In algebraic geometry, the étale topology is a Grothendieck topology on the category of schemes which has properties similar to the Euclidean topology, but unlike the Euclidean topology, it is also defined in positive characteristic. The étale topology was originally introduced by Grothendieck to define étale cohomology, and this is still the étale topology's most well-known use. Definitions For any scheme ''X'', let Ét(''X'') be the category of all étale morphisms from a scheme to ''X''. This is the analog of the category of open subsets of ''X'' (that is, the category whose objects are varieties and whose morphisms are open immersions). Its objects can be informally thought of as étale open subsets of ''X''. The intersection of two objects corresponds to their fiber product over ''X''. Ét(''X'') is a large category, meaning that its objects do not form a set. An étale presheaf on ''X'' is a contravariant functor from Ét(''X'') to the category of sets. A presheaf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Grothendieck Topology
In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category ''C'' that makes the objects of ''C'' act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site. Grothendieck topologies axiomatize the notion of an open cover. Using the notion of covering provided by a Grothendieck topology, it becomes possible to define sheaves on a category and their cohomology. This was first done in algebraic geometry and algebraic number theory by Alexander Grothendieck to define the étale cohomology of a scheme. It has been used to define other cohomology theories since then, such as ℓ-adic cohomology, flat cohomology, and crystalline cohomology. While Grothendieck topologies are most often used to define cohomology theories, they have found other applications as well, such as to John Tate's theory of rigid analytic geometry. There is a natural way to associate a site to an ordinary top ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]